K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2017

=(2+22+23+24+25)+.......+(296+297+298+299+2100)

=2.(1+2+22+23+24)+........+296.(1+2+22+23+24)

=2.31+......+296.31

=31.(2+......+296) chia hết cho 31 (đpcm)

28 tháng 10 2015

Bạn vào câu hỏi tương tự nha !!!

13 tháng 12 2016

A = 2 + 22 + 23 + ... + 2100

A = ( 2 + 22 + 23 ) + ... + ( 298 + 299 + 2100 )

A = 2 . ( 1 + 2 + 4 ) + .... + 298 . ( 1 + 2 + 4 )

A = 2 . 7 + ... + 298 . 7

A = ( 2 + ... + 298 ) . 7 chia hết cho 7 .

A = 2 + 22 + 23 + ... + 2100 

A = ( 2 + 22 + 23 + 24 ) + ... + ( 297 + 298 + 299 + 2100 )

A = 2 . ( 1 + 2 + 4 + 9 ) + ... + 297 . ( 1 + 2 + 4 + 9 )

A = 2 . 15 + ... + 297 . 15

A = ( 2 + ... + 297 ) . 15 chia hết cho 15

A = 2 + 22 + 23 + ... + 2100

A = ( 2 + 22 + 23 + 24 + 25 ) + ... + ( 296 + 297 + 298 + 299 + 2100 )

A = 2 . ( 1 + 2 + 4 + 9 + 16 ) + ... + 296 . ( 1 + 2 + 4 + 9 + 16 )

A = 2 . 31 + ... + 296 . 31

A = ( 2 + ... + 296 ) . 31 chia hết cho 31

22 tháng 8 2015

2+2^2+2^3+...+2^1000 =(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+...+(2^97+2^98+2^99+2^100)

                                 =2.(1+2+2^2+2^3)+2^5.(1+2+2^2+2^3)+...+2^97.(1+2+2^2+2^3)

                                 =2.31+2^5.31+...+2^97.31

                                 =31.(2+2^5+...+2^97) chia hết cho 31

Xem trong câu hỏi tương tự

có chia hết chắc chắn 100%

24 tháng 1 2018

a,A=1+2^2+2^3+.....2^100

     =(1+2^2)+(2^3+2^4)+.....+(2^99+2^100)

    =1.(1+2)+2^3.(1+2)+......+2^99.(1+2)

   =3.(1+2^2+2^3+2^3+.......+2^100)

   =3.k

Vì 3.k hay 3k chia hết cho 3

Suy ra A chia hết cho 3 

Mk làm vậy ko biết có đúng không nhưng bạn nha

Vì mình đã dành thời gian của mình giải cho bạn rồi đó~

10 tháng 11 2016

a) S = 5 + 52 + 53 + ... + 5100

=> S = ( 5 + 52 ) + ( 53 + 54 ) + ... + ( 599 + 5100 )

=> S = 5( 1 + 5 ) + 53( 1 + 5 ) + ... + 599( 1 + 5 ) 

=> S = 5 . 6 + 53 . 6 + ... + 599 . 6

=> S = ( 5 + 53 + ... + 599 ) . 6 chia hết cho 6

=> S chia hết cho 6

b) S1 = 2 + 22 + 23 + ... + 2100

=> S1 = ( 2 + 22 + 23 + 24 + 25 ) + ... + ( 296 + 297 + 298 + 299 + 2100 )

=> S1 = 2( 1 + 2 + 22 + 23 + 24 ) + ... +296( 1 + 2 + 22 + 23 + 24 )

=> S1 = 2 . 31 + ... + 296 . 31

=> S1 = ( 2 + ... + 296 ) . 31 chia hết cho 31

=> S1 chia hết cho 31

c) S2 = 165 + 215

=> S2 = ( 24 )5 + 215

=> S2 = 220 + 215

=> S2 = 220( 1 + 25 )

=> S2 = 220 . 33 chia hết cho 33

=> S2 chia hết cho 33

15 tháng 10 2018

dài quá 

24 tháng 10 2018

\(S1=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)

\(=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{99}.\left(1+5\right)\)

\(=5.6+5^3.6+...+5^{99}.6\)

\(=6.\left(5+5^3+...+5^{99}\right)⋮6\)

câu b tương tự

\(S3=16^5+21^5\)

vì 16+21=33 chia hết cho 33

=>165+215 chia hết cho 33

P/S: theo công thức:(n+m chia hết cho a=> nb+mchia hết cho a)

S1 = 5+52+53+...+599+5100

=5. (1+5)+53 . (1+5) + ... + 599.(1+5)

= 5.6 +53.6+..+ 599.6

=6.(5+53 + ... +599):6

vậy x = ...

b)2+22+23+...+299+2100

=2.(1+2)+23.(1+2) + ... + 299.(1+2)

=2.3+23+..+299):3

= ....

c)165+215

vì 16+21 chia hế 33 nên

theo công thức(n+m chia hết cho a=(nb+mb)