Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\Rightarrow a^3+b^3⋮a+b\)
a) \(A=\left(1^3+10^3\right)+\left(2^3+9^3\right)+\left(3^3+8^3\right)+\left(4^3+7^3\right)+\left(5^3+6^3\right)\Rightarrow A⋮11\)
b) \(A=\left(1^3+9^3\right)+\left(2^3+8^3\right)+\left(3^3+7^3\right)+\left(4^3+6^3\right)+5^3+10^3\)\(\Rightarrow A⋮5\)
Ta có: \(11^{20}-1\)
\(=\left(11^{10}-1\right)\left(11^{10}+1\right)\)
\(=\left(11^5+1\right)\left(11^5-1\right)\left(11^{10}+1\right)\)
\(=\left(11+1\right)\left(11^4-11^3+11^2-11+1\right)\left(11-1\right)\left(11^4+11^3+11^2+11+1\right)\left(11^{10}+1\right)\)\(=120\cdot\left(11^4-11^3+11^2-11+1\right)\left(11^4+11^3+11^2+11+1\right)\left(11^{10}+1\right)\)
\(=120\cdot\left[\left(11^4+11^2+1\right)^2-\left(11^3+11\right)^2\right]\cdot\left(11^{10}+1\right)⋮120\)
Google => gõ: chứng minh 11 mũ .. => online math
Đã có câu hỏi này của 1 bạn khác và được giải rồi nhé
11^10-1=(11-1)(11^9+11^8+...+11+1)=10(11^9+11^8+...+11+1)
11^x-1 chia het cho 10 voi moi x
suy ra 11^9+11^8+...+11+1 chia het cho 10
suy ra 11^10-1 chia het cho 100
a) 2 +4+6+8+...+2018
= ( 2018+2) x 1009 : 2
= 2020 x 1009 : 2
= 1009 x (2020:2)
= 1009 x 1010
= 1 019 090
b) S = 10 + 102 + 103 + ...+ 10100
=> 10.S = 102 + 103 + 104 +...+ 10101
=> 10.S - S = 10101-10
9.S=10101- 10
\(\Rightarrow S=\frac{10^{101}-10}{9}\)
c) \(S=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)
\(\Rightarrow5S=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)
\(5S-S=1-\frac{1}{5^{100}}\)
\(4S=1-\frac{1}{5^{100}}\)
\(S=\frac{1-\frac{1}{5^{100}}}{4}\)
e cx ko nx, e ms hok lp 7 thoy, sang hè ms lp 8! e sr cj nhiều nha!
d) \(S=\frac{1!}{3!}+\frac{2!}{4!}+\frac{3!}{5!}+...+\frac{2018!}{2020!}\)
\(S=\frac{1}{1.2.3}+\frac{1.2}{1.2.3.4}+\frac{1.2.3}{1.2.3.4.5}+...+\frac{1.2.3...2018}{1.2.3...2020}\)
\(S=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2019.2020}\)
\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(S=\frac{1}{2}-\frac{1}{2020}\)
\(S=\frac{1009}{2020}\)
1) Ta có : \(4x+20=0\)
=> \(x=-\frac{20}{4}=-5\)
Vậy phương trình có tập nghiệm là \(S=\left\{-5\right\}\)
2) Ta có : \(3x+15=30\)
=> \(3x=15\)
=> \(x=5\)
Vậy phương trình có tập nghiệm là \(S=\left\{5\right\}\)
3) Ta có : \(8x-7=2x+11\)
=> \(8x-2x=11+7=18\)
=> \(6x=18\)
=> \(x=3\)
Vậy phương trình có tập nghiệm là \(S=\left\{3\right\}\)
4) Ta có : \(2x+4\left(36-x\right)=100\)
=> \(2x+144-4x=100\)
=> \(-2x=-44\)
=> \(x=22\)
Vậy phương trình có tập nghiệm là \(S=\left\{22\right\}\)
5) Ta có : \(2x-\left(3-5x\right)=4\left(x+3\right)\)
=> \(2x-3+5=4x+12\)
=> \(-2x=10\)
=> \(x=-5\)
Vậy phương trình có tập nghiệm là \(S=\left\{-5\right\}\)
1) 4x+20=0
\(\Leftrightarrow\) 4x=-20
\(\Leftrightarrow\) x=-5
Vậy pt trên có tập nghiệm là S={-5}
2) 3x+15=30
\(\Leftrightarrow\) 3x=15
\(\Leftrightarrow\) x=5
Vậy pt trên có tập nghiệm là S={5}
3) 8x-7=2x+11
\(\Leftrightarrow\) 8x-2x=11+7
\(\Leftrightarrow\) 6x=18
\(\Leftrightarrow\) x=3
Vậy pt trên có tập nghiệm là S={3}
4) 2x+4(36-x)=100
\(\Leftrightarrow\) 2x+144-4x=100
\(\Leftrightarrow\) -2x+144=100
\(\Leftrightarrow\) -2x=-44
\(\Leftrightarrow\) x=22
Vậy pt trên có tập nghiệm là S={22}
5) 2x-(3-5x)=4(x+3)
\(\Leftrightarrow\) 2x-3+5x=4x+12
\(\Leftrightarrow\) 2x+5x-4x=12+3
\(\Leftrightarrow\) 3x=15
\(\Leftrightarrow\) x=5
Vậy pt trên có tập nghiệm là S={5}
6) 3x(x+2)=3(x-2)2
\(\Leftrightarrow\) 3x2+6x=3(x2-2x.2+22)
\(\Leftrightarrow\) 3x2+6x=3x2-12x+12
\(\Leftrightarrow\) 3x2-3x2+6x+12x=12
\(\Leftrightarrow\) 18x=12
\(\Leftrightarrow\) x=\(\frac{2}{3}\)
a: Số số hạng là \(\dfrac{2018-2}{2}+1=1009\left(số\right)\)
Tổng là: \(\dfrac{2018+2}{2}\cdot1009=1009\cdot1010=1019090\)
b: \(10S=10^2+10^3+...+10^{101}\)
\(\Rightarrow9S=10^{101}-10\)
hay \(S=\dfrac{10^{101}-10}{9}\)
c: \(5S=1+\dfrac{1}{5}+...+\dfrac{1}{5^{99}}\)
\(\Leftrightarrow4S=1-\dfrac{1}{5^{100}}\)
hay \(S=\dfrac{1}{4}\left(1-\dfrac{1}{5^{100}}\right)\)