Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét: (5n)^4 chia hết cho 125
=> (5n)^(4.25)=(5n)^100 chia hết cho 125
(5n)^100 = (5n)^3 . (5n)^97 = 125 . n^3 . (5n)^97
mà 125 chia hết cho 125 nên 125 . n^3 . (5n)?^97 chia hết cho 125 hay (5n)^100 chia hết cho 125
(5n)100=5100.n100=53.597.n100=125.597.n100 chia hết cho 125
(5n)100 = 5100 X n100
Ta có: 125 = 53
ta có : 5100 chia hết cho 53
=> (5n)100 chia hết cho 125
(5n)100=5100.n100=53.597.n100=125.597.n100
=>(5n)100 chia hết cho 125 (dpcm)
(5n)^100=(5n)^4.25=(5n^25)^4=625.x^100 chia hết cho 125 vì 625 chia hết cho 125
Ta có: \(45=5.9\Rightarrowđể10^{2008}+125\) thì
\(\left(10^{2008}+125\right)⋮5;9\)
Vì \(125⋮5\) bởi có tận cùng là 5
Mà \(10^{2008}\) luôn có tận cùng là 0 nên chia hết cho 5.
\(\Rightarrow\left(10^{2008}+125\right)⋮5\) (1)
Và \(\left(125+1\right)⋮9\) mà \(10^{2008}:9\) dư 1
\(\Rightarrow\left(10^{2008}+125\right)⋮9\) (2)
Từ (1) và (2) suy ra \(\left(10^{2008}+125\right)⋮5;9\Rightarrow\left(10^{2008}+125\right)⋮45\)
=(....000)+125
=.....125
vì ....125 chia hết cho 7
=>100^2008+125 chia hết cho 7