K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2018

a ) Gọi 11 số tự nhiên liên tiếp 1 bất kì là a ; a + 1 ; a + 2 ; a + 3 ; a + 4 ; a + 5 ; a + 6 ; a + 7 ; a + 8 ; a + 9 ; a + 10

Ta thấy : ( a + 10 ) - a = 10 .

Mà 10 lại chia hết cho 10

Suy ra trong 11 số tự nhiên liên tiếp luôn có 2 số có hiệu là 10 ( ko phải ít nhất nha bạn ) 

b ) Gọi 100 số tự nhiên liên tiếp bất kì là 50a ; 50a + 1 ; ... ; 50a + 99

Ta thấy ( 50a + 49 ) + ( 50a + 51 ) = 100a + 100

             ( 50a + 48 ) + ( 50a + 52 ) = 100a + 100

             ( 50a + 1 ) + ( 50a + 49 ) = 100a + 50

Mà 50 và 100  thì lại chia hết cho 50

Suy ra trong 100 số tự nhiên liên tiếp luôn có ít nhất 2 số có tổng chia hết cho 50

7 tháng 9 2017

a. Hai số chẵn liên tiếp có dạng là 2k và 2(k+1) với k là số nguyên .

Tích hai số này là 4k(k+1) . Ta có k(k+1) luôn chia hết cho 2 => 4k(k+1) luôn chia hết cho 8 => đpcm

c)Gọi 5 số tự nhiên liên tiếp là a,a+1,a+2,a+3,a+4

Ta có: a+a+1+a+2+a+3+a+4 =(a+a+a+a+a)+(1+2+3+4) =5.a+10 =5.(a+2) chia hết cho 5

Vậy tổng của 5 số tự nhiên liên tiếp chia hết cho 5

9 tháng 8 2018

4*2=8

2+5=6 ko chia het cho 4

0,1,2,3,4

29 tháng 10 2020

BANG BO DIT ME

25 tháng 6 2017

a,

Gọi 3 số tự nhiên lt đó là a, a+1, a+2, ta có tổng chúng là:

a + a + 1 + a + 2 = 3a + 3 

Mà 3a \(⋮3;3⋮3\)

=> 3a + 3 \(⋮3\)

Vậy tổng ba số tự nhiên liên tiếp luôn chia hết cho 3

b, 

Gọi 4 số tn lt đó lần lượt là a, a+1, a+2, a+3, ta có tổng chúng là:ư

a + a + 1 + a + 2 + a + 3 = 4a + 6 = 4a + 4 + 2 

Mà \(4a⋮4;4⋮4\), 2 chia 4 dư 2 

Vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 4 mà chia 4 dư 2

c, 

Gọi 2 số tự nhiên liên tiếp đó là a, a+11, ta có tích chúng là:

a[a + 1] 

*Nếu a chẵn thì đương nhiên a[a + 1] chia hết cho 2

* nếu a lẻ thì a + 1 sẽ chia hết cho 2 nên a[a + 1] chia hết cho 2

Vậy tích 2 số tự nhiên liên tiếp chia hết cho 2

d, 

Gọi 3 số tự nhiên liên tiếp là a,a+1, a+2, ta có tích chúng là:

a[a+1][a+2]

* cm a[a+1][a+2] chia hết cho 2

** nếu a lẻ thì a + 1 chia hết cho 2 => a[a+1][a+2] chia hết cho 2

** nếu a chẵn thì a và a+2 chia hết cho 2 => a[a+1][a+2] chia hết cho 2

Vậy a[a+1][a+2] chia hết cho 2

* cm a[a+1][a+2] chia hết cho 3

Ta có mọi số tự nhiên đều có dạng 3k, 3k+1 hoặc 3k + 2

** nếu a = 3k => a chia hết cho 3 => a[a+1][a+2] chia hết cho 3

** nếu a = 3k + 1 => a + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 => a[a+1][a+2] chia hết cho 3

** nếu a = 3k + 2 => a + 1 = 3k + 2 + 1 = 3k + 3 chia hết cho 3 => a[a+1][a+2] chia hết cho 3

Vậy a[a+1][a+2] chia hết cho 3

Kết luận: tích ba số tự nhiên liên tiếp chia hết cho 2 và 3

e, 

2 + 22 + 23 + 24 + ... + 260 

= 2[1 + 2 + 22 + 23 + 24 + ... + 260\(⋮2\)

2 + 22 + 23 + 24 + ... + 260 

= [2 + 22 + 23] + 24[2 + 22 + 23] + 28[2 + 22 + 23] + ... + 256[2 + 22 + 23]

= 14 + 24.14 +... + 256.14

= 7 . 2[1 + 24 + ... + 256\(⋮7\)

2 + 22 + 23 + 24 + ... + 260 

= [2 + 22 + 23 + 24] + 25[2 + 22 + 23 + 24] + ... +255[2 + 22 + 23 + 24

= 30 + 25.30 + ... + 255.30

= 5.6 + 25.5.6 + ... + 255.5.6

= 5[1.6 + 25.6 + ... + 255.6] \(⋮5\)

2 + 22 + 23 + 24 + ... + 260 

= [2 + 22 + 23 + 24] + 25[2 + 22 + 23 + 24] + ... +255[2 + 22 + 23 + 24

= 30 + 25.30 + ... + 255.30

= 15.2 + 25.15.2 + ... + 255.15.2

= 15[1.2 + 25.2 + ... + 255.2]\(⋮15\)

Vậy 2 + 22 + 23 + 24 + ... + 260 chia hết cho 2,5,7,15

g, 

102005 - 1 = 1000....000 - 1 [có 2005 chữ số 0]

               = 999.....9999 [2004 chữ số 9] 

Mà 999.....9999 \(⋮9\)[vì 9.2004 chia hết cho 9]

=> 102005 - 1 chia hết cho 9

Mà một số chia hết cho 9 sẽ chia hết cho 3 [VD: 9k = 3.3.k chia hết cho 3]

=> 102005 - 1 chia hết cho 3

Vậy 102005 - 1 chia hết cho 3 và 9

h, 

Ta có:

102005 + 2 = 102005 - 1 + 3

Mà 102005 - 1 chia hết cho 3 [chứng minh trên]

Lại có: 3 chia hết cho 3

=> 102005 + 2 chia hết cho 3

Mà 102005 + 2 = 9999....9 + 3 = 1000000000.....2 [2004 chữ số 0] có tổng các chữ số là:

1 + 0 + 0 + ... + 0 + 2 = 3 không chia hết cho 9

Vậy 102005 + 2 không chia hết cho 9 [mình nghĩ bạn ghi đề nhầm]

13 tháng 10 2018

Gọi 2 số tự nguyên liên tiếp là:  và  a+1

Tích của chúng là:  A  =  a(a+1)

  • Nếu:  a = 2k thì chia hết cho 2  
  • Nếu:  a = 2k+1 thì:  a+1 = 2k+2   chia hết cho 2  =>  A  chia hết cho 2

=>  đpcm

7 tháng 8 2016

1. Ta có:1x2x3=6 chia hết cho 6

             2x3x4 chia hết cho 6...

Vì vậy có thể CMR liên tiếp chia hết cho 6

2: Cũng như vậy

6 tháng 4 2018
  1. 3 số tự nhiên liên tiếp sẽ tồn tại ít nhất 1 số chia hết cho 2, một số chia hết cho 3 nên tích chia hết cho 2*3=6
  2. 4 số tự nhiên liên tiếp sẽ tồn tại 2 số chẵn liên tiếp. Mà 2 số chẵn liên tiếp thì có một số chia hết cho 4 số kia chia hết cho 2

nên tích chia hết cho 4*2=8

tk mình nha

7 tháng 11 2015

trong 8 nguyên liên tiếp chắc chắn phải có 4 số chẵn 
Trong đó : 
+Phải có 1 số chia hết cho 8 
+3 số chẵn còn lại phải có ít nhất 1 số chia hết cho 4 
+Tích 2 số chẵn còn lại chia hết cho 4 
=> tích 8 số nguyên liêp tiếp có dạng 4*4*8*k=128k 
Vậy nó chia hết cho 128

5 tháng 9 2016

gọi 8 số nguyên liên tiếp la 2x-4;2x-3;2x-2;2x-1;2x;2x+1;2x+2;2x+3

Ta có: (2x-4)(2x-3)(2x-2)(2x-1)2x(2x+1)(2x+2)(2x+3)

=2(x-2)(2x-3)2(x-1)(2x-1)2x(2x+1)2(x+1)(2x+3)

=16(x-2)(x-1)x(x+1)(2x-3)((2x-1)(2x+1)(2x+3) chia hết cho 16

(x-2)(x-1)x(x+1) là tích 4 số nguyên liên tiếp nên co 1 số chia hết co 2 và 1 số chia hết cho 4

mà 2.4=8

=> đpcm

23 tháng 9 2019

a. Ta có:

45 + 99 + 180 = 324

Vì: Số tận cùng của nó là số 4

=> 324 chia hết cho 2 

23 tháng 9 2019

 Bài 1

chỉ cần tính ra kết quả là đc

Bài 2

Giả sử một số tự nhiên bất kì = n

=> 2 số tự nhiên liên tiếp là n và n+1

- Với n = 2k+1=>n+1 = 2k+2 chia hết 2

- Với n = 2k => n chia hết 2

              Vậy trong 2 số tự nhiên liên tiếp luôn có 1 số chia hết 2