K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2016

bạn làm theo công thức \(\frac{n}{n.\left(n+1\right)}=\frac{n}{n}-\frac{n}{n+1}\)

21 tháng 6 2016

a)Đặt A= \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}\)

\(\Rightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}\)

\(\Rightarrow2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n-1}-\frac{1}{2n+1}\)

\(\Rightarrow2A=1-\frac{1}{2n+1}< 1\)

\(\Rightarrow A< \frac{1}{2}\)(đpcm)

b)Ta có: \(1+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...n}< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

mà \(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(=1+1-\frac{1}{n}\)

\(=2-\frac{1}{n}< 2\)

\(\Rightarrow1+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...n}< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}< 2\)

\(\Rightarrow1+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...n}< 2\)(đpcm)

4 tháng 7 2017

b) Giải:

Ta có: \(k\left(k+1\right)\left(k+2\right)\)

\(=\dfrac{1}{4}\left[k\left(k+1\right)\left(k+2\right)\left(k+3\right)-\left(k-1\right)k\left(k+1\right)\left(k+2\right)\right]\)

Do đó: \(P=\dfrac{1}{4}.n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

Thay vào ta tính được:

\(P\left(100\right)=26527650;P\left(2009\right)=\dfrac{1}{4}.2009.2010.2011.2012\)

Mà: \(\dfrac{1}{4}.2009.2010.2011=2030149748\)

\(149748.2012=3011731776;2030.2012.10^6=4084360000000\)

Cộng lại ta có: \(P\left(2009\right)=4087371731776\)

24 tháng 9 2017

\(L_1=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{2015.2016.2017}\)

\(L_1=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{2015.2016}-\dfrac{1}{2016.2017}\right)\)

\(L_1=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2016.2017}\right)\)

\(L_1=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2016.2017}\right)\)

\(L_1=\dfrac{1}{4}-\dfrac{1}{2.2016.2017}\)

\(L_2=1.2+2.3+...+2006.2007\)

\(3L_2=1.2.3+2.3.\left(4-1\right)+...+2006.2007.\left(2008-2005\right)\)

\(3L_2=1.2.3+2.3.4-1.2.3+...+2006.2007.2008-2005.2006.2007\)\(3L_2=2006.2007.2008\)

\(L_2=\dfrac{2006.2007.2008}{3}\)

\(pt\Leftrightarrow\left(\dfrac{1}{4}-\dfrac{1}{2.2016.2017}\right).x=\dfrac{2006.2007.2008}{3}\)

Dễ dàng tìm được x nhé

24 tháng 9 2017

Xin loi ban nhe, tu dong thu 2 xuong dong thu 3 minh k hieu cho lam, ban ghi ro hon duoc k a !!! Cam on ban rat nhieu, minh muon viet co dau lam nhung cai may cua minh no bi cai quai j roi, nen ban thong cam nhe !!!

11 tháng 2 2018

Bài này không tính nhé tth nghĩ nát óc mới ra :3

\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2005.2006.2007}\right)x=1.2\left(3-0\right)+2.3\left(4-1\right)+...+2006+2007\left(2008-2005\right)\)\(3\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2005.2006.2007}\right)x=2\left(1.2\left(3-0\right)+2.3+...+2006+2007\right)\)

\(2\left(1.2.3+2.3.4-1.2.3+...+2006+2007.2008-2005.2006.2007\right)\)

Đến đây rồi tự làm tiếp đi nhé

30 tháng 7 2018

\(=\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)-\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{99.100.101}\right)\)

\(=\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)-\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)

\(=\left(1-\frac{1}{100}\right)-\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{100.101}\right)\)

\(=\frac{99}{100}-\frac{1}{2}\cdot\frac{5049}{10100}=\frac{99}{100}-\frac{5049}{20200}=\frac{14949}{20200}\)