\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{100}}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2020

Ta có : \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}};...;\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)

Khi đó : \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}+\frac{1}{\sqrt{100}}\)\(>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}\)(100 số hạng \(\frac{1}{\sqrt{100}}\))

\(=\frac{1}{\sqrt{100}}.100=\frac{100}{\sqrt{100}}=\frac{100}{10}=10\)(ĐPCM)

1 tháng 3 2018


\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\) 

.............................. 
\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)

Cộng vế với vế của 99 bất đẳng thức trên ta được: 
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{99}}>99\cdot\frac{1}{10}=\frac{99}{10}\)

=> A = \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{99}}+\frac{1}{\sqrt{100}}>\frac{99}{10}+\frac{1}{10}=\frac{100}{10}=10\)

4 tháng 12 2017

a) \(10\sqrt{0,01}.\sqrt{\frac{16}{9}}+3\sqrt{49}-\frac{1}{6}\sqrt{4}\)

\(=10\sqrt{\frac{10}{100}}.\sqrt{\frac{4^2}{3^2}}+3.\sqrt{7^2}-\frac{1}{6}\sqrt{2^2}\)

\(=10.\frac{\sqrt{10}}{10}.\frac{4}{3}+3.7-\frac{1}{6}.2\)

\(=\frac{4\sqrt{10}}{3}+27-\frac{1}{3}\)

\(=\frac{4}{3}\sqrt{10}+\frac{80}{3}\)

b) \(\left(1+\frac{2}{3}-\frac{1}{4}\right).\left(0,8-\frac{3}{4}\right)^2\)

\(=\frac{17}{12}.\left(\frac{4}{5}-\frac{3}{4}\right)^2\)

\(=\frac{17}{12}.\left(\frac{1}{20}\right)^2\)

\(=\frac{17}{12}.\frac{1}{400}\)

\(=\frac{17}{4800}\)

4 tháng 12 2017

a.\(\frac{133}{6}\)

b.\(\frac{17}{4800}\)

1 tháng 4 2020

Lớp 7 vừa học hằng đẳng thức, chú ý hằng đẳng thức sau: (a - b)(a + b) = a2 - b2.

Bạn cần khử căn dưới mẫu và cộng tổng bên trái, muốn vậy bạn phải đánh giá từng phân số bằng cách làm trội nó

Sử dụng đánh giá sau: \(\frac{1}{\sqrt{k}}>\frac{1}{\sqrt{k}+\sqrt{k-1}}=\sqrt{k}-\sqrt{k-1}\)

1 tháng 4 2020

Ta có:

\(\frac{1}{\sqrt{1}}>\frac{10}{\sqrt{100}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}};...;\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)

\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}=10\)(đpcm)

12 tháng 4 2018

Ta có : 

\(1>\frac{1}{10}=\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)

\(............\)

\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)

\(\Rightarrow\)\(A=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\)

Do từ \(1\) đến \(100\) có \(100-1+1=100\) số tự nhiên nên có \(100\) phân số \(\frac{1}{\sqrt{100}}\) ta được : 

\(A>100.\frac{1}{\sqrt{100}}=\frac{100}{\sqrt{100}}=\frac{100}{10}=10\)

\(\Rightarrow\)\(A>10\) ( đpcm ) 

Vậy \(A>10\)

Chúc bạn học tốt ~ 

2 tháng 12 2019

Ta có:

\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

\(.............\)

\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)

Khi đó:

\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{100}}\)

\(>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+.......+\frac{1}{\sqrt{100}}\left(100sohang\right)\)

\(=10\)

2 tháng 12 2019

Có BĐT sau:

\(\sqrt{\left(n-1\right)\left(n+1\right)}< n\)

\(\Leftrightarrow\left(n-1\right)\left(n+1\right)< n^2\)

\(\Leftrightarrow n^2-1< n^2\)

\(\Leftrightarrow-1< 0\left(true!!\right)\)

Áp dụng vào ta có:

\(\sqrt{2019\cdot2021}< 2020\Rightarrowđpcm\)

31 tháng 12 2019

Ta có : \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)

\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)

\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)

\(VT>\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}+\frac{1}{\sqrt{100}}\)

\(=\frac{1}{10}+\frac{1}{10}\) có 100 số hạng 

\(=\frac{100}{10}=10\)

Dòng 6 cuối cùng mình làm cũng không được chắc chắn lắm đâu òng 6 đấy bạn ngoặc ở dưới 1/10 +1/10 nhé

31 tháng 1 2018

Ta có: \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

.......

\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)

\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}=\frac{100}{\sqrt{100}}=10\) (đpcm)

16 tháng 12 2017

b, \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)

Ta có: \(1< 100\Rightarrow\sqrt{1}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{1}}< \frac{1}{\sqrt{100}}\)

           \(2< 100\Rightarrow\sqrt{2}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{2}}< \frac{1}{\sqrt{100}}\)

          \(3< 100\Rightarrow\sqrt{3}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{3}}< \frac{1}{\sqrt{100}}\)

           ______________________________________________

          \(100=100\Rightarrow\sqrt{100}=\sqrt{100}\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\left(1\right)\)

Từ (1) suy ra:

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\left(100sh\frac{1}{\sqrt{100}}\right)\)

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}.100\)

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{10}{\sqrt{100}}\)

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>10\left(ĐPCM\right)\)