Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a, Ta có: \(A=\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+...+\frac{1}{22}>\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+...+\frac{1}{22}=\frac{1}{22}.11=\frac{11}{22}=\frac{1}{2}\)
Vậy: \(A>\frac{1}{2}\)
b, Ta có: \(B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{99}+\frac{1}{100}\)
\(=\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{49}+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right)\)
Mà: \(\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{49}+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right)\text{}\text{}\text{}>\left(\frac{1}{50}+...+\frac{1}{50}+\frac{1}{50}\right)+\left(\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\right)\)
=> \(B\text{}\text{}\text{}>\frac{1}{50}.41+\frac{1}{100}.50=\frac{41+25}{50}=\frac{33}{25}>1\)
Vậy: \(B>1\)
c, Ta có: \(C=\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{16}+\frac{1}{17}< \frac{1}{5}+\frac{1}{6}+\left(\frac{1}{7}+...+\frac{1}{7}+\frac{1}{7}\right)=\frac{11}{30}+11.\frac{1}{7}=\frac{407}{210}< \frac{420}{210}=2\)
Vậy: \(C< 2\)
Chúc bạn học tốt!Tick cho mình nhé!
Ta có : \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\)
= \(\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)\)
Thấy : \(\frac{1}{11}>\frac{1}{100}\)
\(\frac{1}{12}>\frac{1}{100}\)
...
\(\frac{1}{99}>\frac{1}{100}\)
Cộng từng vế : \(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}>\frac{1}{100}+...+\frac{1}{100}\)( 90 SH 1/100)
\(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}>\frac{9}{10}\)
=> \(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}>\frac{9}{10}+\frac{1}{10}\)
=> Tổng trên > 1
Bài1:
a)Ta có:
\(-203< 0;\dfrac{1}{2017}>0\)
Nên \(-203< \dfrac{1}{2017}\)
b)\(\dfrac{7}{29}và\dfrac{12}{47}\)
c)Đặt \(A=\dfrac{10^{11}+1}{10^{12}+1}\);\(B=\dfrac{10^{12}+1}{10^{13}+1}\)
Ta có:\(10A=\dfrac{10^{12}+1+9}{10^{12}+1}=1+\dfrac{9}{10^{12}+1}\)
\(10B=\dfrac{10^{13}+1+9}{10^{13}+1}=1+\dfrac{9}{10^{13}+1}\)
Do đó:\(10A>10B\Rightarrow A>B\)
Bài2:
a)\(500>2^x>100\)
Ta có:\(100< 2^7< 2^8< 500\)
\(\Rightarrow x\in\left\{7;8\right\}\)
Vậy...
Câu sau tương tự
a) Ta có: \(-203< 0;\dfrac{1}{2017}>0\)
\(\Rightarrow\dfrac{1}{2017}>-203\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
\(B=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{107.111}\)
\(B=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{107}-\frac{1}{111}\)
\(B=\frac{1}{3}-\frac{1}{111}\)
\(B=\frac{12}{37}\)
\(C=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
\(C=7\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(C=7\left(\frac{1}{10}-\frac{1}{70}\right)\)
\(C=7.\frac{3}{35}\)
\(C=\frac{3}{5}\)
Ta có:
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)
\(B=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{107.111}\)
\(B=4.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{107}-\frac{1}{111}\right)\)
\(B=4.\left(\frac{1}{3}-\frac{1}{111}\right)=4.\frac{12}{37}=\frac{48}{37}\)
\(C=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
\(C=7.\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\)
\(C=7.\left(\frac{1}{10}-\frac{1}{70}\right)=7.\frac{3}{35}=\frac{3}{5}\)
Nguyễn Đăng Duy ơi bài trên là tính nhanh hay tính vậy bạn .
A<B
cách làm thì tự tìm hiểu nha
mak bài này thầy chữa rùi mak
\(C=-\dfrac{9}{10}\left(-\dfrac{10}{11}\right)\left(-\dfrac{11}{12}\right)...\left(-\dfrac{98}{99}\right)\left(-\dfrac{99}{100}\right)\)
Ta thấy C có \(\left(100-10\right):2+1=46\) thừa số nên số dấu âm là chẵn
Vậy \(C=\dfrac{9}{10}\cdot\dfrac{10}{11}\cdot\dfrac{11}{12}\cdot...\cdot\dfrac{99}{100}=\dfrac{9}{100}\)
A=1+(2-3-3+5)+(6-7-8+9)+....+(98-99-100+101)+102
=1+0+0+....+102=103
b) |1-2x|>7
=> 1-2x>7 hoặc 1-2x<-7
=> 2x<-6 hoặc 2x>8
=> x<-3 hoặc x>4
Xét C = \(\frac{1}{11}+\frac{1}{12}+....+\frac{1}{50}\)(40 số hạng)
=> C > \(\frac{1}{50}.40\)
=> C > \(\frac{4}{5}\)
Xét D = \(\frac{1}{51}+\frac{1}{52}+....+\frac{1}{100}\)(50 số hạng)
=> D > \(\frac{1}{100}.50\)
=> D > \(\frac{1}{2}\)
=> B = \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}>\frac{1}{10}+\frac{4}{5}+\frac{1}{2}\)
=> B > \(\frac{7}{5}\) > 1
=> B > 1 (Đpcm)