Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
\(B=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{107.111}\)
\(B=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{107}-\frac{1}{111}\)
\(B=\frac{1}{3}-\frac{1}{111}\)
\(B=\frac{12}{37}\)
\(C=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
\(C=7\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(C=7\left(\frac{1}{10}-\frac{1}{70}\right)\)
\(C=7.\frac{3}{35}\)
\(C=\frac{3}{5}\)
Ta có:
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)
\(B=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{107.111}\)
\(B=4.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{107}-\frac{1}{111}\right)\)
\(B=4.\left(\frac{1}{3}-\frac{1}{111}\right)=4.\frac{12}{37}=\frac{48}{37}\)
\(C=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
\(C=7.\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\)
\(C=7.\left(\frac{1}{10}-\frac{1}{70}\right)=7.\frac{3}{35}=\frac{3}{5}\)
\(A=\frac{9}{10}\times\frac{10}{11}\times\frac{11}{12}\times...\times\frac{99}{100}\)
\(A=\frac{9\times10\times11\times...99}{10\times11\times12\times...\times100}\)
\(\Rightarrow A=\frac{9}{100}\)
\(A=\left(\frac{1}{10}-1\right)\left(\frac{1}{11}-1\right)\left(\frac{1}{12}-1\right)...\left(\frac{1}{99}-1\right)\left(\frac{1}{100}-1\right)\)
\(A=\left(-\frac{9}{10}\right)\cdot\left(-\frac{10}{11}\right)\cdot\left(-\frac{11}{12}\right)\cdot....\cdot\left(-\frac{98}{99}\right)\left(-\frac{99}{100}\right)\)
\(A=\frac{\left(-9\right)\left(-10\right)\left(-11\right)...\left(-98\right)\left(-99\right)}{10\cdot11\cdot12\cdot....\cdot99\cdot100}\)
\(A=\frac{9\cdot10\cdot11\cdot....\cdot98\cdot99}{10\cdot11\cdot12\cdot...\cdot99\cdot100}=\frac{9}{100}\)
Bài làm:
\(A=\left(\frac{1}{10}-1\right)\left(\frac{1}{11}-1\right)\left(\frac{1}{12}-1\right)...\left(\frac{1}{99}-1\right)\left(\frac{1}{100}-1\right)\)
\(A=\frac{\left(-9\right)}{10}.\frac{\left(-10\right)}{11}.\frac{\left(-11\right)}{12}...\frac{\left(-98\right)}{99}.\frac{\left(-99\right)}{100}\)
\(A=-\left(\frac{9.10.11...98.99}{10.11.12...99.100}\right)\)
\(A=-\frac{9}{100}\)
Học tốt!!!!
\(A=\left(\frac{1}{10}-1\right).\left(\frac{1}{11}-1\right).\left(\frac{1}{12}-1\right)...\left(\frac{1}{99}-1\right).\left(\frac{1}{100}-1\right)\)(91 cặp số)
\(=\frac{-9}{10}.\frac{-10}{11}.\frac{-11}{12}....\frac{-98}{99}.\frac{-99}{100}\)(91 thừa số)
\(=-\left(\frac{9}{10}.\frac{10}{11}.\frac{11}{12}....\frac{98}{99}.\frac{99}{100}\right)\)
\(=-\frac{9}{100}\)
\(=-0,09\)
Vậy A = - 0,09
Lời giải:
a, Ta có: \(A=\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+...+\frac{1}{22}>\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+...+\frac{1}{22}=\frac{1}{22}.11=\frac{11}{22}=\frac{1}{2}\)
Vậy: \(A>\frac{1}{2}\)
b, Ta có: \(B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{99}+\frac{1}{100}\)
\(=\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{49}+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right)\)
Mà: \(\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{49}+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right)\text{}\text{}\text{}>\left(\frac{1}{50}+...+\frac{1}{50}+\frac{1}{50}\right)+\left(\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\right)\)
=> \(B\text{}\text{}\text{}>\frac{1}{50}.41+\frac{1}{100}.50=\frac{41+25}{50}=\frac{33}{25}>1\)
Vậy: \(B>1\)
c, Ta có: \(C=\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{16}+\frac{1}{17}< \frac{1}{5}+\frac{1}{6}+\left(\frac{1}{7}+...+\frac{1}{7}+\frac{1}{7}\right)=\frac{11}{30}+11.\frac{1}{7}=\frac{407}{210}< \frac{420}{210}=2\)
Vậy: \(C< 2\)
Chúc bạn học tốt!Tick cho mình nhé!
A= ( 1/10-1) + ( 1/11 - 1 ) +...+ ( 1/100-1)
= 9/10 + 10/11 +...+ 99/100
= 9/100
^_^ ( have a good day)
\(C=-\dfrac{9}{10}\left(-\dfrac{10}{11}\right)\left(-\dfrac{11}{12}\right)...\left(-\dfrac{98}{99}\right)\left(-\dfrac{99}{100}\right)\)
Ta thấy C có \(\left(100-10\right):2+1=46\) thừa số nên số dấu âm là chẵn
Vậy \(C=\dfrac{9}{10}\cdot\dfrac{10}{11}\cdot\dfrac{11}{12}\cdot...\cdot\dfrac{99}{100}=\dfrac{9}{100}\)