Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ko bt bn giải ra chưa nx nhưng mk giả thử nhé!
bn sửa lại đề: \(x^{50}+x^{20}+1⋮x^{20}+x^{10}+1\)
\(x^{50}+x^{20}+1=x^{50}-x^{20}+x^{20}+x^{10}+1\)\(=x^{20}\left(x^{30}-1\right)+x^{20}+x^{10}+1\)
\(=x^{20}[\left(x^{10}\right)^3-1]+x^{20}+x^{10}+1\)
\(=x^{20}\left(x^{10}-1\right)\left(x^{20}+x^{10}+1\right)+x^{20}+x^{10}+1\)\(=\left(x^{20}+x^{10}+1\right)[x^{20}\left(x^{10}-1\right)+1]\)
Từ đó suy ra đpcm
à quên, cách lm thì đúng r nhưng đề mk sửa lại sai nhé
đúng là \(x^{50}+x^{10}+1⋮x^{20}+x^{10}+1\)
999 - 888 - 111 + 111 - 111 + 111 - 111
= 111 - 111 + 111 - 111 + 111 - 111
= 0 + 111 - 111 + 111 - 111
= 111 - 111 + 111 - 111
= 0 + 111 - 111
= 111 - 111
= 0
Biến đổi \(x^{50}+x^{20}+x^{10}\) ra tích có chứa thừa số \(x^{20}+x^{10}+1\) bạn nhé
\(x^{50}+x^{10}+1=x^{20}\left(x^{30}-1\right)+\left(x^{20}+x^{10}+1\right)\)
\(=x^{20}\left(x^{10}-1\right)\left(x^{20}+x^{10}+1\right)+\left(x^{20}+x^{10}+1\right)\)
\(=\left(x^{20}+x^{10}+1\right)\left(x^{30}-x^{20}+1\right)⋮\left(x^{20}+x^{10}+1\right)\forall x\)
Ta có: \(x^{50}-x^{20}=x^{20}\left(x^{30}-1\right)=x^{20}\left(x^{10}-1\right)\left(x^{20}+x^{10}+1\right)\)
\(\Rightarrow x^{50}-x^{20}⋮x^{20}+x^{10}+1\)
\(\Rightarrow x^{50}+x^{10}+1⋮x^{20}+x^{10}+1\)
Đặng Khánh Duy Mk dùng HĐT.
\(x^{30}-1=\left(x^{10}\right)^3-1=\left(x^{10}-1\right)\left(x^{20}+x^{10}+1\right)\)
Đặt \(A=x^{20}+x^{10}+1\)
\(x^{50}+x^{10}+1\)
\(=x^{50}-x^{20}+A\)
\(=x^{20}\left(x^{30}-1\right)+A\)
\(=x^{20}\left(x^{10}-1\right)A+A\)
\(=\left(x^{30}-x^{20}+1\right)A\)
mà \(\left(x^{30}-x^{20}+1\right)A⋮A\)
\(\Rightarrow\left(x^{50}+x^{10}+1\right)⋮\left(x^{20}+x^{10}+1\right)\)
a: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\cdot\left(x^2-2x-3\right)=0\)
=>(7x+10)(x-3)=0
=>x=3 hoặc x=-10/7
b: \(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow13\left(x+3\right)+x^2-9-12x-42=0\)
\(\Leftrightarrow x^2-12x-51+13x+39=0\)
\(\Leftrightarrow x^2+x-12=0\)
=>(x+4)(x-3)=0
=>x=-4
b: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(x^2-2x-3\right)=0\)
=>(7x+10)(x-3)=0
hay \(x\in\left\{-\dfrac{10}{7};3\right\}\)
d: \(\Leftrightarrow\dfrac{13}{2x^2+7x-6x-21}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow26x+91+x^2-9-12x-14=0\)
\(\Leftrightarrow x^2+14x+68=0\)
hay \(x\in\varnothing\)