Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{a.Ta có :}\)
\(x^{8n}+x^{4n}+1=x^{8n}+2x^{4n}+1-x^{4n}\)
\(=\left(x^{4n}+1\right)^2-\left(x^{2n}\right)^2\)
\(=\left(x^{4n}-x^{2n}+1\right)\left(x^{4n}+x^{2n}+1\right)\)
\(\text{Ta lại có :}\)
\(x^{4n}+x^{2n}+1=x^{4n}+2x^{2n}+1-x^{2n}\)
\(=\left(x^{2n}+1\right)^2-\left(x^n\right)^2=\left(x^{2n}-x^n+1\right)\left(x^{2n}+x^n+1\right)\)
\(\Rightarrow x^{8n}+x^{4n}+1=\left(x^{4n}-x^{2n}+1\right)\left(x^{2n}-x^n+1\right)\left(x^{2n}+x^n+1\right)\)
\(\Rightarrow x^{8n}+x^{4n}+1⋮x^{2n}+x^n+1\)
\(S=\left(n^2+n-1\right)^2-1\)
\(S=\left(n^2+n-1\right)^2-1^2\)
\(S=\left(n^2+n-1-1\right)\left(n^2+n-1+1\right)\)
\(S=\left(n^2+n-2\right)\left(n^2+n\right)\)
\(S=n\left(n+1\right)\left(n^2+2n-n-2\right)\)
\(S=n\left(n+1\right)\left[n\left(n+2\right)-\left(n+2\right)\right]\)
\(S=n\left(n+1\right)\left(n-2\right)\left(n-1\right)\)
Dễ thấy S là tích của 4 số nguyên liên tiếp, do đó S chia hết cho 24 ( đpcm )
\(S=\left(n^2+n-1\right)^2-1\)
\(=\left(n^2+n-1\right)^2-1^2\)
\(=\left(n^2+n-1-1\right)\left(n^2+n-1+1\right)\)
\(=\left(n^2+n-2\right)\left(n^2+n\right)\)
\(=\left(n^2-n+2n-2\right)\left(n^2+n\right)\)
\(=\left[n\left(n-1\right)+2\left(n-1\right)\right]\left(n+1\right).n\)
\(=\left(n-1\right)\left(n+2\right)\left(n+1\right)n\)
\(=\left(n-1\right).n.\left(n+1\right)\left(n+2\right)\)
Tích của 4 số liên tiếp luôn chia hết cho 24
\(\Rightarrow S⋮24\)
2)Ta có: \(x^{3m+1}+x^{3n+2}+1\)= \(x^{3m+1}-x+x^{3n+2}-x^2+x^2+x+1\)
= \(x\left(x^{3m}-1\right)+x^2\left(x^{3n}-1\right)+\left(x^2+x+1\right)\)
Ta thấy: \(x^{3m}-1=\left(x^3\right)^m-1=\left(x^3-1\right)k\) \(⋮\) \(x^3-1\)
\(x^{3n}-1=\left(x^3\right)^n-1=\left(x^3-1\right)h\) \(⋮\) \(x^3-1\)
Do đó: \(x\left(x^{3m}-1\right)+x^2\left(x^{3n}-1\right)+\left(x^2+x+1\right)\) chia hết cho \(x^2+x+1\)
Vậy \(x^{3m+1}+x^{3n+2}+1\) chia hết cho \(x^2+x+1\)
a)
x^4-x^3+6x^2-x +a x^2-x+5 x^2+1 x^2 -x +a a-5
Để \(x^4-x^3+6x^2-x+a⋮x^2-x+5\) thì \(a-5=0\Rightarrow a=5\)
b)
3n^3+10n^2 -5 3n+1 n^2+3n-1 9n^2 -5 -3n-5 -4
Để \(3n^3+10n^2-5⋮3n+1\) thì \(3n+1⋮-4\)
\(\Rightarrow3n+1\inƯ\left(-4\right)\)
\(\Rightarrow3n+1\in\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow3n\in\left\{-5;-3;-2;0;1;3\right\}\)
\(\Rightarrow n\in\left\{-\dfrac{5}{3};-1;-\dfrac{2}{3};0;\dfrac{1}{3};1\right\}\)
Ta có: a3b−ab3=a3b−ab−ab3+ab=ab(a2−1)−ab(b2−1)
=b(a−1)a(a+1)−a(b−1)b(b+1)
Do tích của 3 số tự nhiên liên tiếp thì chia hết cho 6
=> b(a−1)a(a+1);a(b−1)b(b+1)⋮6⇒a3b−ab3⋮6⇒a3b−ab3⋮6
mk chưa đk hok đến dạng này , còn phần b chắc cx như phần a thôy , pjo mk có vc bận nên tối về mk sẽ lm típ nha
Bài 2:
a: Để A là số nguyên thì \(3n^3+10n^2-5⋮3n+1\)
\(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow n\in\left\{0;-1;1\right\}\)(do n là số nguyên)
b: Để B là số nguyên thì \(n^3-4n^2+5n-1⋮n-3\)
\(\Leftrightarrow n^3-3n^2-n^2+3n+2n-6+5⋮n-3\)
\(\Leftrightarrow n-3\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{4;2;8;-2\right\}\)
Ta có:\(x^{3m+1}+x^{3n+2}+1=x^{3m}x-x+3^{3n}-x^2+x^2+x+1=x\left(\left(x^3\right)^m-1\right)+x^2\left(\left(x^3\right)^n-1\right)+\left(x^2+x+1\right)\)Ta lại có: (Hằng đẳng thức)
\(a^n+b^n=\left(a+b\right)\left(a^{n-1}+a^{n-2}b+...+ab^{n-2}+b^{n-1}\right)\)chia hết cho a+b
=>\(\left(x^3\right)^m-1\)chia hết cho \(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)chia hết cho \(x^2+x+1\)
và \(\left(x^3\right)^n-1\)chia hết cho \(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)chia hết cho \(x^2+x+1\)
mà \(x^{3m+1}+x^{3n+2}+1=x^{3m}x-x+3^{3n}-x^2+x^2+x+1=x\left(\left(x^3\right)^m-1\right)+x^2\left(\left(x^3\right)^n-1\right)+\left(x^2+x+1\right)\)
=> \(x^{3m+1}+x^{3n+2}+1\) chia hết cho \(x^2+x+1\)
_________________________________________________________________________________
Xét
\(x^{3m+1}+x^{3n+2}+1-\left(x^2+x+1\right)\)
\(=x^{3m}.x+x^{3n}.x^2+1-x^2-x-1\)
\(=x\left(x^{3m}-1\right)+x^2\left(x^{3n}-1\right)\)
Do \(x^{3m}-1=\left(x^3\right)^m-1^m⋮x^3-1⋮x^2+x+1\)
\(x^{3n}-1=\left(x^3\right)^n-1^n⋮x^3-1⋮x^2+x+1\)
\(\Rightarrow x\left(x^{3m}-1\right)+x^2\left(x^{3n}-1\right)⋮x^2+x+1\)
\(\Rightarrow x^{3m+1}+x^{3n+2}+1-\left(x^2+x+1\right)⋮x^2+x+1\)
\(\Rightarrow x^{3m+1}+x^{3n+2}+1⋮x^2+x+1\)