Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vế trái bằng vế phải nên đẳng thức được chứng minh.
Nếu x ≥ 0, y ≥ 0, z ≥ 0 thì:
x + y + z ≥ 0
x - y 2 + y - z 2 + z - x 2 ≥ 0
Suy ra:
x 3 + y 3 + z 3 - 3 x y z ≥ 0 ⇔ x 3 + y 3 + z 3 ≥ 3 x y z
Hay: x 3 + y 3 + z 3 3 ≥ x y z
Vế trái bằng vế phải nên đẳng thức được chứng minh.
Nếu a ≥ 0, b ≥ 0, c ≥ 0 thì :
Ta có: \(x^3+y^3=3xyz-z^3\)
\(\Leftrightarrow\left(x^3+y^3\right)+z^3-3xyz=0\)
\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz=0\)
\(\Leftrightarrow\left[\left(x+y\right)^3+z^3\right]-\left[3xy\left(x+y\right)+3xyz\right]=0\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow3\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Mà \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}}\left(\forall x,y,z\right)\Rightarrow Vt\ge0\left(\forall x,y,z\right)\)
Dấu "=" xảy ra khi: \(\left(x-y\right)^2=\left(y-z\right)^2=\left(z-x\right)^2=0\)
\(\Rightarrow x=y=z=1\)
Từ đó \(P=673\cdot\left(1^{2020}+1^{2020}+1^{2020}\right)+1=2020\)
Vậy P = 2020
Tham khảo: https://vi.wikipedia.org/wiki/%C4%90%E1%BB%8Bnh_l%C3%BD_l%E1%BB%9Bn_Fermat
a: (x+y+z)^3-x^3-y^3-z^3
=(x+y+z-x)(x^2+2xy+y^2-x^2-xy-xz+z^2)-(y+z)(y^2-yz+z^2)
=(x+y)(y+z)(x+z)
b: x^3+y^3+z^3=1
x+y+z=1
=>x+y=1-z
x^3+y^3+z^3=1
=>(x+y)^3+z^3-3xy(x+y)=1
=>(1-z)^3+z^3-3xy(1-z)=1
=>1-3z-3z^2-z^3+z^3-3xy(1-z)=1
=>1-3z+3z^2-3xy(1-z)=1
=>-3z+3z^2-3xy(1-z)=0
=>-3z(1-z)-3xy(1-z)=0
=>(z-1)(z+xy)=0
=>z=1 và xy=0
=>z=1 và x=0; y=0
A=1+0+0=1
Ta có: \(x^3-y^3=3x-3y\Leftrightarrow x^2+xy+y^2=3\) (Do \(x\neq y\)).
Tương tự: \(y^2+yz+z^2=3;z^2+zx+x^2=3\).
Cộng vế với vế ta có: \(2\left(x^2+y^2+z^2\right)+xy+yz+zx=9\)
\(\Leftrightarrow\dfrac{3\left(x^2+y^2+z^2\right)}{2}+\dfrac{\left(x+y+z\right)^2}{2}=9\).
Mặt khác, từ đó ta cũng có: \(\left(x^2+xy+y^2\right)-\left(y^2+yz+z^2\right)=0\Leftrightarrow\left(x+y+z\right)\left(x-z\right)=0\Leftrightarrow x+y+z=0\).
Do đó \(x^2+y^2+z^2=6\left(đpcm\right)\).
Ta có với x,y,z >0 thì:\(\dfrac{x^2}{\sqrt{1-x^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}\)
Bất đẳng thức Cô si ta có:
\(x\sqrt{1-x^2}\le\dfrac{x^2+1-x^2}{2}=\dfrac{1}{2}\\ \Rightarrow\dfrac{1}{x\sqrt{1-x^2}}\ge2\\ \Rightarrow\dfrac{x^3}{x\sqrt{1-x^2}}\ge2x^3\Leftrightarrow\dfrac{x^2}{\sqrt{1-x^2}}\ge2x^3\)
Tương tự: \(\dfrac{y^2}{\sqrt{1-y^2}}\ge2y^3;\dfrac{z^2}{\sqrt{1-z^2}}\ge2z^3\)
Từ đó ta có:\(\dfrac{x^2}{\sqrt{1-x^2}}+\dfrac{y^2}{\sqrt{1-y^2}}+\dfrac{z^2}{\sqrt{1-z^2}}\ge2\left(x^3+y^3+z^3\right)=2\left(dpcm\right)\)
đề sai rồi nha:
\(x^3+y^3+z^3\ge3xyz\)
Bài này mk nghĩ bn nên cauchy 3 số