\(\ge\)\(\frac{\left(x+y\right)^2}{2}\)

bằn...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2019

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

\(\Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2\)

\(\Leftrightarrow2x^2+2y^2-x^2-2xy-y^2\ge0\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\)( luôn đúng )

Dấu "=" xảy ra \(\Leftrightarrow x=y\)

12 tháng 4 2019

Cách 1

\(x^2+y^2=\frac{x^2+y^2+x^2+y^2}{2}=\frac{(x^2+y^2+2xy)+\left(x^2+y^2-2xy\right)}{2}\)

                \(=\frac{\left(x+y^2\right)+\left(x-y\right)^2}{2}\ge\frac{\left(x+y^2\right)}{2}\)vì \(\left(x-y\right)^2\ge0\)

Cách 2:  \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow2x^2+2y^2\ge x^2+2xy+y^2\Leftrightarrow x^2+y^2-2xy\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\)(BĐT đúng)

Do đó \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)là BĐT đúng 

20 tháng 3 2019

a ) Ta có : \(\left(ab+1\right)^2\ge4ab\)

\(\Leftrightarrow a^2b^2+2ab+1-4ab\ge0\)

\(\Leftrightarrow\left(ab-1\right)^2\ge0\)

=> BĐT luôn đúng

Dấu " = " xảy ra \(\Leftrightarrow ab=1\)

b ) Áp dụng BĐT Bunhiacopxki , ta có :

\(\left(ab+1.2\right)^2\le\left(a^2+1^2\right)\left(b^2+2^2\right)=\left(a^2+1\right)\left(b^2+4\right)\)

Dấu " = " xảy ra \(\Leftrightarrow2a=b\)

c ) Áp dụng BĐT Cô - si cho 2 số không âm , ta có :

\(4a^2+b^2\ge2\sqrt{4a^2.b^2}=4ab\)

\(\Rightarrow2\left(4a^2+b^2\right)\ge4a^2+4ab+b^2=\left(2a+b\right)^2\)

Dấu " = " xảy ra \(\Leftrightarrow2a=b\)

d ) \(x^5+y^5\ge xy\left(x^3+y^3\right)\)

\(\Leftrightarrow x^5-x^4y-y^4x+y^5\ge0\)

\(\Leftrightarrow\left(x^4-y^4\right)\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)\ge0\)

Vì x ; y > 0 => BĐT luôn đúng

Dấu " = " xảy ra \(\Leftrightarrow x=y\)

20 tháng 3 2019

d ) x ; y > 0 nên x không thể = - y

6 tháng 11 2018

Cách 1 : 

\(x^2+y^2=\frac{x^2+y^2+x^2+y^2}{2}=\frac{\left(x^2+y^2+2xy\right)+\left(x^2+y^2-2xy\right)}{2}\)

                \(=\frac{\left(x+y\right)^2+\left(x-y\right)^2}{2}\ge\frac{\left(x+y\right)^2}{2}\)     (vì \(\left(x-y\right)^2\ge0\)

Cách 2:

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow2x^2+2y^2\ge x^2+2xy+y^2\Leftrightarrow x^2+y^2-2xy\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\)       ( BĐT đúng)

Do đó \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\) là BĐT đúng.

6 tháng 11 2018

Thêm một cách khác:

Áp dụng BĐT Cauchy-Schwarz dạng Engel:

Ta có: \(x^2+y^2=\frac{x^2}{1}+\frac{y^2}{1}\ge\frac{\left(x+y\right)^2}{1+1}=\frac{\left(x+y\right)^2}{2}^{\left(đpcm\right)}\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{x^2}{1}=\frac{y^2}{1}\) hay \(x^2=y^2\) hay \(x=y\)

25 tháng 5 2019

Áp dụng BĐT : ( a + b + c )2 \(\ge\)3 ( ab + bc + ac )

Ta có : \(\frac{\left(x+y+1\right)^2}{xy+y+x}\ge\frac{3\left(xy+y+x\right)}{xy+y+x}=3\)

đặt \(\frac{\left(x+y+1\right)^2}{xy+y+x}=A\)

ta có : \(A+\frac{1}{A}=\frac{8A}{9}+\frac{A}{9}+\frac{1}{A}\ge\frac{8.3}{9}+2\sqrt{\frac{A}{9}.\frac{1}{A}}=\frac{8}{3}+\frac{2}{3}=\frac{10}{3}\)

25 tháng 5 2019

Ta có \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

=> \(a^2+b^2+c^2\ge ab+bc+ac\)=> \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

Áp dụng ta được

\(\left(x+y+1\right)^2\ge3\left(x+y+xy\right)\)=> \(\frac{\left(x+y+1\right)^2}{xy+y+x}\ge3\)

Đặt \(\frac{\left(x+y+1\right)^2}{x+y+xy}=t\)(\(t\ge3\))

Khi đó

\(VT=t+\frac{1}{t}=\left(\frac{t}{9}+\frac{1}{t}\right)+\frac{8}{9}t\ge\frac{2}{3}+\frac{8}{9}.3=\frac{10}{3}\)

Dấu bằng xảy ra khi \(\hept{\begin{cases}t=3\\x=y=1\end{cases}}\)=> x=y=1

Lưu ý 

Nhiều người sẽ nhầm \(VT\ge2\)

Khi đó dấu bằng \(\left(x+y+1\right)^2=xy+x+y\)không xảy ra 

28 tháng 4 2017

Ta xét hiệu \(\frac{x^2+y^2+z^2}{3}-\left(\frac{x+y+z}{3}\right)^2\)

\(=\frac{1}{9}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\) (Đúng)

Vậy \(\frac{x^2+y^2+z^2}{3}\ge\left(\frac{x+y+z}{3}\right)^2\) (Đpcm)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)