\(x^{2002}+x^{2000}+1\)\(⋮\)\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2020

b, Ta có : \(\frac{x-10}{1994}+\frac{x-8}{1996}+\frac{x-6}{1994}+\frac{x-4}{2000}+\frac{x-2}{2002}=\frac{x-2002}{2}+\frac{x-2000}{4}+\frac{x-1998}{6}+\frac{x-1996}{8}+\frac{x-1994}{10}\)

=> \(\frac{x-10}{1994}-1+\frac{x-8}{1996}-1+\frac{x-6}{1994}-1+\frac{x-4}{2000}-1+\frac{x-2}{2002}-1=\frac{x-2002}{2}-1+\frac{x-2000}{4}-1+\frac{x-1998}{6}-1+\frac{x-1996}{8}-1+\frac{x-1994}{10}-1\)

=> \(\frac{x-2004}{1994}+\frac{x-2004}{1996}+\frac{x-2004}{1994}+\frac{x-2004}{2000}+\frac{x-2004}{2002}=\frac{x-2004}{2}+\frac{x-2004}{4}+\frac{x-2004}{6}+\frac{x-2004}{8}+\frac{x-2004}{10}\)

=> \(\frac{x-2004}{1994}+\frac{x-2004}{1996}+\frac{x-2004}{1994}+\frac{x-2004}{2000}+\frac{x-2004}{2002}-\frac{x-2004}{2}-\frac{x-2004}{4}-\frac{x-2004}{6}-\frac{x-2004}{8}-\frac{x-2004}{10}=0\)

=> \(\left(x-2004\right)\left(\frac{1}{1994}+\frac{1}{1996}+\frac{1}{1998}+\frac{1}{2000}+\frac{1}{2002}-\frac{1}{2}-\frac{1}{4}-\frac{1}{6}-\frac{1}{8}-\frac{1}{10}\right)=0\)

=> \(x-2004=0\)

=> \(x=2004\)

Vậy phương trình có tập nghiệm là \(S=\left\{2004\right\}\)

a) Sửa đề: \(\frac{x+1}{35}+\frac{x+3}{33}=\frac{x+5}{31}+\frac{x+7}{29}\)

Ta có: \(\frac{x+1}{35}+\frac{x+3}{33}=\frac{x+5}{31}+\frac{x+7}{29}\)

\(\Leftrightarrow\frac{x+1}{35}+1+\frac{x+3}{33}+1=\frac{x+5}{31}+1+\frac{x+7}{29}+1\)

\(\Leftrightarrow\frac{x+36}{35}+\frac{x+36}{33}=\frac{x+36}{31}+\frac{x+36}{29}\)

\(\Leftrightarrow\frac{x+36}{35}+\frac{x+36}{33}-\frac{x+36}{31}-\frac{x+36}{29}=0\)

\(\Leftrightarrow\left(x+36\right)\left(\frac{1}{35}+\frac{1}{33}-\frac{1}{31}-\frac{1}{29}\right)=0\)

\(\frac{1}{35}+\frac{1}{33}-\frac{1}{31}-\frac{1}{29}\ne0\)

nên x+36=0

hay x=-36

Vậy: x=-36

Giải các phương trình sau : ( biến đổi đặc biệt )a) \(\frac{x+1}{35}\)+ \(\frac{x+3}{33}\)= \(\frac{x+5}{31}\)+ \(\frac{x+7}{29}\)( HD : cộng thêm 1 vào các hạng tử )b) \(\frac{x-10}{1994}\)+ \(\frac{x-8}{1996}\)+\(\frac{x-6}{1998}\)+ \(\frac{x-4}{2000}\)+ \(\frac{x-2}{2002}\)= \(\frac{x-2002}{2}\)+ \(\frac{x-2000}{4}\)+ \(\frac{x-1988}{6}\)+ \(\frac{x-1996}{8}\)+ \(\frac{x-1994}{10}\)( HD : trừ đi 1 vào các hạng tử...
Đọc tiếp

Giải các phương trình sau : ( biến đổi đặc biệt )

a) \(\frac{x+1}{35}\)\(\frac{x+3}{33}\)\(\frac{x+5}{31}\)\(\frac{x+7}{29}\)( HD : cộng thêm 1 vào các hạng tử )

b) \(\frac{x-10}{1994}\)\(\frac{x-8}{1996}\)+\(\frac{x-6}{1998}\)\(\frac{x-4}{2000}\)\(\frac{x-2}{2002}\)\(\frac{x-2002}{2}\)\(\frac{x-2000}{4}\)\(\frac{x-1988}{6}\)\(\frac{x-1996}{8}\)\(\frac{x-1994}{10}\)( HD : trừ đi 1 vào các hạng tử ) 

c) \(\frac{x-1991}{9}\)\(\frac{x-1993}{7}\)\(\frac{x-1995}{5}\)\(\frac{x-1997}{3}\)\(\frac{x-1991}{1}\)\(\frac{x-9}{1991}\)\(\frac{x-7}{1993}\)\(\frac{x-5}{1995}\)\(\frac{x-3}{1997}\)\(\frac{x-1}{1999}\)( HD : trừ đi 1 vào các hạng tử )

d) \(\frac{x-85}{15}\)\(\frac{x-74}{13}\)\(\frac{x-67}{11}\)\(\frac{x-64}{9}\)= 10  ( Chú ý : 10 = 1 + 2 + 3 + 4 )

e) \(\frac{x-1}{13}\)\(\frac{2x-13}{15}\)\(\frac{3x-15}{27}\)\(\frac{4x-27}{29}\)( HD : Thêm hoặc bớt 1 vào các hạng tử )

 

1
16 tháng 4 2020

a, \(\frac{x+1}{35}+\frac{x+3}{33}=\frac{x+5}{31}+\frac{x+7}{29}\)

\(\frac{x+36}{35}+\frac{x+36}{33}-\frac{x+36}{31}-\frac{x+36}{29}=0\)

\(\left(x+36\right)\left(\frac{1}{35}+\frac{1}{33}-\frac{1}{31}-\frac{1}{29}\right)=0\)

\(=>x+36=0\)

\(=>x=36\)

12 tháng 7 2015

\(\Rightarrow\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2013}+1\)

\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)

\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

=> x +2004 =0 ( 1/2000 + 1/2001 - 1/2002 - 1/2003 khác 0 )

=> x = -2004 

Vậy x = -2004 là nghiệm của pt

12 tháng 7 2015

\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Leftrightarrow\frac{x+4}{2000}+\frac{2000}{2000}+\frac{x+3}{2001}+\frac{2001}{2001}=\frac{x+2}{2002}+\frac{2002}{2002}+\frac{x+1}{2003}+\frac{2003}{2003}\)

\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)

\(\Leftrightarrow\left(x+2004\right).\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

mà \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)nên

x+2004=0

<=>x=-2004

Chúc bạn học tốt :))

23 tháng 12 2016

x2+y2=1

(x2+y2)2=1

x4+y4+2x2y2=1

thay vào bt ta dc

x4/a+y4/b=x4+y4+2x2y2/a+b

x4b/ab+y4a/ab=x4+y4+2x2y2/a+b

x4b+y4a/a+b=x4+y4+2x2y2/a+b

nhân chéo lên rồi rút gọn ta dc

(x2b-y2a)2=0

x2b=y2a

23 tháng 12 2016

x4+yà bạn

1 tháng 4 2020

a) \(\frac{x+2}{2002}\)+\(\frac{x+5}{1999}\)+\(\frac{x+201}{1803}\)=-3

\(\frac{x+2}{2002}\)+\(\frac{x+5}{1999}\)+\(\frac{x+201}{1803}\)+3=0

\(\frac{x+2}{2002}\)+1+\(\frac{x+5}{1999}\)+1+\(\frac{x+201}{1803}\)+1=0

\(\frac{x+2004}{2002}\)+\(\frac{x+2004}{1999}\)+\(\frac{x+2004}{1803}\)=0

⇔(x+2004)(\(\frac{1}{2002}\)+\(\frac{1}{1999}\)+\(\frac{1}{1803}\))=0

Mà (\(\frac{1}{2002}\)+\(\frac{1}{1999}\)+\(\frac{1}{1803}\))≠0

⇒x+2004=0

⇔x=-2004

Vậy tập nghiệm của phương trình đã cho là:S={-2004}

Phạm Thái HảiCảm ơn bn iu nhìu nhé❤

1 tháng 1 2019

Sửa để\(\frac{x-10}{1994}+\frac{x-8}{1996}+\frac{x-6}{1998}+\frac{x-4}{2000}+\frac{x-2}{2002}=5\)

\(\Leftrightarrow\frac{x-10}{1994}-1+\frac{x-8}{1996}-1+\frac{x-6}{1998}-1+\frac{x-4}{2000}-1+\frac{x-2}{2002}-1=0\)

\(\Leftrightarrow\frac{x-2004}{1994}+\frac{x-2004}{1996}+\frac{x-2004}{1998}+\frac{x-2004}{2000}+\frac{x-2004}{2002}=0\)

\(\Leftrightarrow\left(x-2004\right)\left(\frac{1}{1994}+\frac{1}{1996}+...+\frac{1}{2002}\right)=0\)

                                 |_____________A__________________|

Vì A > 0 nên x - 2004 = 0

                => x = 2004

Vậy ..........

1 tháng 1 2019

đề đúng mà cậu ==

18 tháng 3 2020

\( a)5\left( {x - 3} \right) - 4 = 2\left( {x - 1} \right) + 7\\ \Leftrightarrow 5x - 15 - 4 = 2x - 2 + 7\\ \Leftrightarrow 5x - 19 = 2x + 5\\ \Leftrightarrow 5x - 2x = 5 + 19\\ \Leftrightarrow 3x = 24\\ \Leftrightarrow x = 8\\ b)\dfrac{{8x - 3}}{4} - \dfrac{{3x - 2}}{2} = \dfrac{{2x - 1}}{2} + \dfrac{{x + 3}}{4}\\ \Leftrightarrow 8x - 3 - \left( {3x - 2} \right).2 = \left( {2x - 1} \right).2 + x + 3\\ \Leftrightarrow 8x - 3 - 6x + 4 = 4x - 2 + x + 3\\ \Leftrightarrow 2x + 1 = 5x + 1\\ \Leftrightarrow 2x - 5x = 0\\ \Leftrightarrow - 3x = 0\\ \Leftrightarrow x = 0 \)

18 tháng 3 2020

\( c)\dfrac{{2\left( {x + 5} \right)}}{3} + \dfrac{{x + 12}}{2} - \dfrac{{5\left( {x - 2} \right)}}{6} = \dfrac{x}{3} + 11\\ \Leftrightarrow 4\left( {x + 5} \right) + 3\left( {x + 12} \right) - \left[ {5\left( {x - 2} \right)} \right] = 2x + 66\\ \Leftrightarrow 4x + 20 + 3x + 36 - 5x + 10 = 2x + 66\\ \Leftrightarrow 2x + 66 = 2x + 66\\ \Leftrightarrow 0x = 0\left( {VSN} \right)\\ \Leftrightarrow x = 0 \)

\(d)\dfrac{x-10}{1994}+\dfrac{x-8}{1996}+\dfrac{x-6}{1998}+\dfrac{x-4}{2000}+\dfrac{x-2}{2002}=\dfrac{x-2002}{2}+\dfrac{x-2000}{4}+\dfrac{x-1998}{6}+\dfrac{x-1996}{8}+\dfrac{x-1994}{10}\\ \Leftrightarrow \dfrac{x-10}{1994}-1+\dfrac{x-8}{1996}-1+\dfrac{x-6}{1998}-1+\dfrac{x-4}{2000}-1+\dfrac{x-2}{2002}-1=\dfrac{x-2002}{2}-1+\dfrac{x-2000}{4}-1+\dfrac{x-1998}{6}-1+\dfrac{x-1996}{8}-1+\dfrac{x-1994}{10}-1\\ \Leftrightarrow \dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}+\dfrac{x-2004}{2000}\dfrac{x-2004}{2002}=\dfrac{x-2004}{2}+\dfrac{x-2004}{4}+\dfrac{x-2004}{6}+\dfrac{x-2004}{8}+\dfrac{x-2004}{10}\\ \Leftrightarrow \dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}+\dfrac{x-2004}{2000}\dfrac{x-2004}{2002}-\dfrac{x-2004}{2}-\dfrac{x-2004}{4}-\dfrac{x-2004}{6}-\dfrac{x-2004}{8}-\dfrac{x-2004}{10}=0\\ \Leftrightarrow \left(x-2004\right)\left(\dfrac{1}{1994}+\dfrac{1}{1996}+\dfrac{1}{1998}+\dfrac{1}{2000}+\dfrac{1}{2002}-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{6}-\dfrac{1}{8}-\dfrac{1}{10}=0\right)\\ \Leftrightarrow x-2004=0\\ \Leftrightarrow x=2004\)

6 tháng 3 2018

a)\(\dfrac{201-x}{99}+\dfrac{203-x}{97}=\dfrac{205-x}{95}+3=0\)

<=>\(\left(\dfrac{201-x}{99}+1\right)+\left(\dfrac{203-x}{97}+1\right)+\left(\dfrac{205-x}{95}+1\right)=0\)

<=>\(\dfrac{201-x+99}{99}+\dfrac{203-x+97}{97}=\dfrac{205-x+95}{95}=0\)

<=> \(\dfrac{300-x}{99}+\dfrac{300-x}{97}=\dfrac{300-x}{95}=0\)

<=> \(\left(300-x\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)=0\)

<=> 300 - x = 0

<=> x = 300

b) \(\dfrac{2-x}{2002}-1=\dfrac{1-x}{2003}-\dfrac{x}{2004}\)

<=> \(\dfrac{2-x}{2002}+1=\left(\dfrac{1-x}{2003}+1\right)+\left(\dfrac{x}{2004}+1\right)\){Cộng cả hai vế của phương trình với 2}

<=> \(\dfrac{2-x+2002}{2002}=\dfrac{1-x+2003}{2003}+\dfrac{-x+2004}{2004}\)

<=> \(\dfrac{2004-x}{2002}=\dfrac{2004-x}{2003}+\dfrac{2004-x}{2004}\)

<=> \(\dfrac{2004-x}{2002}-\dfrac{2004-x}{2003}-\dfrac{2004-x}{2004}=0\)

<=> \(\left(2004-x\right)\left(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\right)=0\)

<=> 2004 - x = 0

<=> x = 2004.

8 tháng 3 2018

ủa câu b

từ hàng 1 đang dấu - xuống hàng 2 thành dấu cộng rồi

\(-\dfrac{x}{2014}\Rightarrow+\left(\dfrac{x}{2014}+1\right)\)