\(n^2+\left(n+1\right)^2+\left(n+3\right)^2\) ^2   ko t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2016

a) \(\frac{\left(n+1\right)!}{n!\left(n+2\right)}=\frac{n!\left(n+1\right)}{n!\left(n+2\right)}=\frac{n+1}{n+2}\)

b)\(\frac{n!}{\left(n+1\right)!-n!}=\frac{n!}{n!\left(n+1\right)-n!}=\frac{n!}{n!\left(n+1-1\right)}=\frac{1}{n}\)

c)\(\frac{\left(n+1\right)!-\left(n+2\right)!}{\left(n+1\right)!+\left(n+2\right)!}=\frac{n!\left(n+1\right)-n!\left(n+1\right)\left(n+2\right)}{n!\left(n+1\right)+n!\left(n+1\right)\left(n+2\right)}=\frac{n!\left(n+1\right)\left(1-n-2\right)}{n!\left(n+1\right)\left(1+n+2\right)}=\frac{-n-1}{n+3}\)

( Kí hiệu n!=1.2.3.4...n)

22 tháng 11 2016

cảm ơn bạn nhiều nhiều nhiều lắm

24 tháng 12 2018

kết quả 

lên mạng

24 tháng 12 2018

kết quả 

lên mạng

24 tháng 12 2018

\(n^3+\left(n+1\right)^3+\left(n+2\right)^3\)

\(=n^3+n^3+3n^2+3n+1+n^3+3n^2.2+3n.2^2+2^3\)

\(=3n^3+9n^2+15n+9=3\left(n^3+3n^2+5n+3\right)\)

\(=3\left(n^3+n^2+2n^2+2n+3n+3\right)\)

\(=3\left[n^2\left(n+1\right)+2n\left(n+1\right)+3\left(n+1\right)\right]\)

\(=3\left[\left(n+1\right)\left(n^2+2n\right)+3\left(n+1\right)\right]\)

\(=3n\left(n+1\right)\left(n+2\right)+9\left(n+1\right)\)

Vì n(n+1)(n+2) là tích 3 stn liên tiếp nên tích này chia hết cho 3

=>\(3n\left(n+1\right)\left(n+2\right)⋮9\) mà \(9\left(n+1\right)⋮9\)

=>\(n^3+\left(n+1\right)^3+\left(n+2\right)^3⋮9\)

5 tháng 5 2017

a) \(3\left(5-4n\right)+\left(27+2n\right)>0\)

\(\Leftrightarrow15-12n+27+2n>0\)

\(\Leftrightarrow42-10n>0\)

\(\Leftrightarrow-10n>-42\Leftrightarrow n< 4,2\)

Vậy \(S=\left\{n|n< 4,2\right\}\)

b) \(\left(n+2\right)^2-\left(n-3\right)\left(n+3\right)\le40\)

\(\Leftrightarrow n^2+4n+4-n^2+9\le40\)

\(\Leftrightarrow4n+13\le40\)

\(\Leftrightarrow4n\le27\Leftrightarrow n\le6,75\)

Vậy \(S=\left\{n|n\le6,75\right\}\)

1 tháng 6 2018

vì bài dài quá nên mình làm từng bài 1 nhé

1. Ta thấy : \(\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)

Do đó : 

\(B< \frac{1}{2}.\left[\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]< \frac{1}{2}.\frac{1}{6}=\frac{1}{12}\)

1 tháng 6 2018

2.

Nhận xét : \(1+\frac{1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

Do đó : 

\(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2.3...\left(n+1\right)}{1.2...n}.\frac{2.3...\left(n+1\right)}{3.4...\left(n+2\right)}=\frac{n+1}{1}.\frac{2}{n+2}< 2\)

26 tháng 6 2016

\(3.3^{n-1}\left(6.3^{n+2}+3\right)-2.3^n\left(3^{n+3}-1\right)=405\)

\(\Leftrightarrow18.3^{2n+1}+3.3^n-2.3^{2n+3}+2.3^n=405\)

\(\Leftrightarrow54.3^{2n}+5.3^n-2.3^3.3^{2n}=405\)

\(\Leftrightarrow3^n=81\)

\(\Leftrightarrow n=4\)

1 tháng 5 2017

Đề câu cuối sai chỗ x phải là n

a)\(-x^2+4x-9=-5-\left(x^2-4x+4\right)=-5-\left(x-2\right)^2\)

(x-2)2\(\ge0\forall x\in R\)

=>-(x-2)2\(\le0\forall x\in R\)

=>-5-(x-2)2\(\le-5\forall x\in R\)(ĐPCM)

b)\(x^2-2x+9=\left(x^2-2x+1\right)+8=\left(x-1\right)^2+8\)

(x-1)2\(\ge0\forall x\in R\)

=>(x-1)2+8\(\ge8\forall x\in R\)(đpcm)

c)11x-7<8x+2

<=>11x-8x<2+7

<=>3x<9

<=>x<3

Mà x nguyên dương=>x={1;2}

d)(n+2)2-(n-3)(n+3)\(\le\)40

<=>n2+4n+4-n2+9\(\le\)40

<=>4n+13\(\le\)40

<=>4n\(\le\)27

<=>n\(\le\)\(\dfrac{27}{4}< 7\)

n là số tự nhiên =>n={0;1;...;6}