K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2015

Đăng mấy bài này trên đây khó nhận được đáp án lắm! Nên đăng trên một số diễn đàn nhiều pro như:

Diễn đàn Toán học

Diễn Đàn MathScope

.......

Bài 1.

+TH1: Đa thức có bậc là 0

\(f\left(x\right)=a\text{ }\left(a\in R\right)\forall x\in R\)

Theo đề ra: \(16a^2=a^2\Rightarrow a=0\)

Vậy \(f\left(x\right)=0\forall x\in R\)

+TH2: Đa thức có bậc lớn hơn hoặc bằng 1.

Giả sử đa thức có bậc n.

Gọi hệ số cao nhất của đa thức là \(a_n\text{ }\left(a_n\ne0\right)\)

Từ giả thiết, suy ra: \(16a_n^2=\left(2a_n\right)^2\Leftrightarrow16a_n^2=4a_n^2\Leftrightarrow a_n=0\text{ (vô lí)}\)

Vậy điều giả sử sai, hay không có đa thức nào thỏa mãn.

Vậy chỉ có \(f\left(x\right)=0\forall x\in R\) thỏa mãn để bài.

28 tháng 12 2017

Giả sử phương trình f(x) = 0 có nghiệm nguyên x = a. Khi đó f(x) = (x - a).g(x)

Vậy thì f(0) = -a.g(x)   ; f(1) = (1 - a).g(x) ; f(2) = (2 - a).g(x);    f(3) = (3 - a).g(x) ; f(4) = (4 - a).g(x) ; 

Suy ra f(0).f(1).f(2).f(3).f(4) = -a.(1-a)(2-a)(3-a)(4-a).g5(x)

VT không chia hết cho 5 nhưng VP lại chia hết cho 5 (Vì -a.(1-a)(2-a)(3-a)(4-a) là tích 5 số nguyên liên tiếp nên chia hết cho 5)

Vậy giả sử vô lý hay phương trình f(x) = 0 không có nghiệm nguyên.