Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=3n^4-3n^3-11n^3+11n^2+10n^2-10n\)
\(=\left(n-1\right)\left(3n^3-11n^2+10n\right)\)
\(=n\left(n-1\right)\left(n-2\right)\left(3n-5\right)\)
\(=n\left(n-1\right)\left(n-2\right)\left(3n+3-8\right)\)
\(=3n\left(n-1\right)\left(n+1\right)\left(n-2\right)-8n\left(n-2\right)\left(n-1\right)\)
Vì n;n-1;n+1;n-2 là 4 số liên tiếp
nên n(n-1)(n+1)(n+2) chia hết cho 4!=24
mà -8n(n-2)(n-1) chia hết cho 24
nên A chia hết cho 24
b: \(=n\left(n^4-5n^2+4\right)\)
\(=n\left(n-1\right)\left(n-2\right)\left(n+1\right)\left(n+2\right)\)
Vì đây là 5 số liên tiếp
nên \(n\left(n-1\right)\cdot\left(n-2\right)\left(n+1\right)\left(n+2\right)⋮5!=120\)
Bài 1:
a) \(\left(2+x\right)\left(x^2-2x+4\right)-\left(3+x^2\right)x=14\) (1)
\(\Leftrightarrow2x^2-4x+8+x^3-2x^2+4x+\left(-3-x^2\right)x=14\)
\(\Leftrightarrow8+x^3-3x-x^3=17\)
\(\Leftrightarrow8-3x=14\)
\(\Leftrightarrow-3x=14-8\)
\(\Leftrightarrow-3x=6\)
\(\Leftrightarrow x=-2\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{-2\right\}\)
b) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)=4\) (2)
\(\Leftrightarrow21x-15x^2-35+25x-\left(10x-15x^2+4-6x\right)=4\)
\(\Leftrightarrow21x-15x^2-35+25x-\left(4x-15x^2+4\right)=4\)
\(\Leftrightarrow21x-15x^2-35+25x-4x+15x^2-4=4\)
\(\Leftrightarrow42x-39=4\)
\(\Leftrightarrow42x=4+39\)
\(\Leftrightarrow42x=43\)
\(\Leftrightarrow x=\dfrac{43}{42}\)
Vậy tập nghiệm phương trình (2) là \(S=\left\{\dfrac{43}{42}\right\}\)
Bài 2: tự làm đi :)))))))))))
Bài 3:
\(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n⋮5\)
Vậy \(n\left(2n-3\right)-2n\left(n+1\right)⋮5\) (đpcm)
3. Ta có: n(2n - 3) - 2n(n+1) = 2n\(^{^2}\) - 3n - 2n\(^{^2}\) - 2n
= -5n
Mà -5n \(⋮\) 5
Vậy n(2n-3) - 2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
Ta có : \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)
Đây là tích của 3 số nguyên liên tiếp nên trong 3 số nguyên liên tiếp tồn tại 1 bội số của 2 và 3
\(\Rightarrow a\left(a-1\right)\left(a+1\right)⋮2;3\)
Mà \(\left(2,3\right)=1\Rightarrow a\left(a-1\right)\left(a+1\right)⋮6\)
\(\Rightarrow a^3-a⋮6\left(1\right)\)
CMTT , ta có : \(b^3-b⋮6;c^3-c⋮6\left(2\right)\)
Từ ( 1 ) ; ( 2 )
\(\Rightarrow a^3-a+b^3-b+c^3-c⋮6\)
\(\Rightarrow\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\)
Mà \(a+b+c⋮6\)
\(\Rightarrow a^3+b^3+c^3⋮6\left(đpcm\right)\)
a,
6n^2 - n + 5 2n + 1 3n - 2 6n^2 + 3n -4n + 5 -4n - 2 7 \
Để \(A⋮B\) \(\Leftrightarrow7⋮2n+5\) \(\Leftrightarrow2n+5\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\)
Ta có bảng sau :
\(2n+5\) | \(1\) | \(7\) | \(-1\) | \(-7\) |
\(n\) | \(-2\) | \(1\) | \(-3\) | \(-6\) |
Vậy \(\left[{}\begin{matrix}n=-2\\n=1\\n=-3\\n=-6\end{matrix}\right.\) thì A chia hết cho B
b, tường tự câu a
Nếu mà bn ko lm đc thì nói mk ,mk sẽ giải cho
Đặt tính chia:
6n-n+5 2 2n+1 3n-2 6n+3n - 2 -4n+5 - -4n-2 _______________ 7
\(\Rightarrow\text{Để }A⋮B\\ \text{thì }\Rightarrow7⋮2n+1\\ \Rightarrow2n+1\inƯ_{\left(7\right)}\\ \text{Mà }Ư_{\left(7\right)}=\left\{\pm1;\pm7\right\}\)
Ta lập bảng giá trị :
\(2n+1\) | \(-1\) | \(1\) | \(-7\) | \(7\) |
\(n\) | \(-1\) | \(0\) | \(-4\) | \(3\) |
\(\Rightarrow n\in\left\{-4;-1;0;3\right\}\)
\(\text{Vậy }\text{ để }A⋮B\text{ thì }n\in\left\{-4;-1;0;3\right\}\)
b) Xem lại đề
\(\)