\(\in\) Z và a+b+c chia hết cho 6 . Cm : a3 +b3 +
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2018

Ta có : \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)

Đây là tích của 3 số nguyên liên tiếp nên trong 3 số nguyên liên tiếp tồn tại 1 bội số của 2 và 3

\(\Rightarrow a\left(a-1\right)\left(a+1\right)⋮2;3\)

\(\left(2,3\right)=1\Rightarrow a\left(a-1\right)\left(a+1\right)⋮6\)

\(\Rightarrow a^3-a⋮6\left(1\right)\)

CMTT , ta có : \(b^3-b⋮6;c^3-c⋮6\left(2\right)\)

Từ ( 1 ) ; ( 2 )

\(\Rightarrow a^3-a+b^3-b+c^3-c⋮6\)

\(\Rightarrow\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\)

\(a+b+c⋮6\)

\(\Rightarrow a^3+b^3+c^3⋮6\left(đpcm\right)\)

18 tháng 9 2019

1) a. Câu hỏi của Hàn Vũ Nhi - Toán lớp 8 - Học toán với OnlineMath

25 tháng 10 2016

1) A=4*\(\frac{10^{2n}-1}{9}\)        B=\(2\cdot\frac{10^{n+1}-1}{9}\)         C=\(8\cdot\frac{10^n-1}{9}\)

đặt 10^n=X        => A+B+C+7=(4*x^2-4+2*10*x-2+8x-8+63)/9=(4x^2+28x+49)/9

=> A+B+C+7=\(\frac{\left(2x+7\right)^2}{3^2}\)

2)  = 4mn((m^2-1)-(n^2-1))=4mn(m+1)(m-1)-4mn(n-1)(n+1)

mà m,n nguyên => m-1,m,m+1 và n-1,n,n+1 là 3 số nguyên liên tiếp nên chia hết cho 6

do đó 4mn(m^2-n^2) chia hết 6*4=24

26 tháng 10 2016

Bài 2 ko đúng bn ak 6,4 không nguyên tố cùng nhau mà

24 tháng 1 2016

62462