Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a^3+b^3+c^3=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(a+b+c\right)\)
\(=a\left(a^2-1\right)+b\left(b^2-a\right)+c\left(c^2-1\right)+\left(a+b+c\right)\)
\(=a\left(a-1\right)\left(a+1\right)+b\left(b+1\right)\left(b-1\right)+c\left(c-1\right)\left(c+1\right)+\left(a+b+c\right)\)
Vì \(a\left(a-1\right)\left(a+1\right)⋮6\)
\(b\left(b-1\right)\left(b+1\right)⋮6\)
\(c\left(c-1\right)\left(c+1\right)⋮6\)
\(a+b+c⋮6\)
\(\Rightarrow a^3+b^3+c^3⋮6\)
\(\Rightarrowđccm\)
Đề sai nhé bạn . a=b=c=0 thì phân số 1/a không có nghĩa!
nếu giả thiết cho \(a=b=c=1\) thì ta thay vào đẳng thức trên
\(1+1+1+3=2.\left(1+1+1\right)=6\)
điều này luôn đúng với thuận và đảo
Ta có: a13-a1=a1(a12-1)=(a1-1)a1(a1+1), là tích của 3 số nguyên liên tiếp nên a13-a1 chia hết cho 2 và 3. Mà (2;3)=1
=> a13-a1 chia hết cho 6
Chứng minh tương tự:
a23-a2 chia hết cho 6
...
a20133 - a2013 chia hết cho 6.
=>(a13-a1) + (a23-a2)+...+(a20132 - a2013) chia hết cho 6
Hay S-P chia hết cho 6.
Do đó: Nếu một trong 2 biểu thức S, P chia hết cho 6 ta suy ra biểu thức còn lại cũng chia hết cho 6.
Vậy S chia hết cho 6 khi và chỉ khi P chia hết cho 6.
Áp dụng bất đẳng thức Cô-si ta có :
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge3\sqrt[3]{\frac{1}{a^3b^3c^3}}=\frac{3}{abc}\)
Dấu = xảy ra khi \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\) Hay \(a=b=c\) ( đề cho )
Vậy ta có đpcm : \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Từ a+b+c=6 \(\Rightarrow\)a+b=6-c
Ta có: ab+bc+ac=9\(\Leftrightarrow\)ab+c(a+b)=9
\(\Leftrightarrow\)ab=9-c(a+b)
Mà a+b=6-c (cmt)
\(\Rightarrow\)ab=9-c(6-c)
\(\Rightarrow\)ab=9-6c+c2
Ta có: (b-a)2\(\ge\)0 \(\forall\)b, c
\(\Rightarrow\)b2+a2-2ab\(\ge\)0
\(\Rightarrow\)(b+a)2-4ab\(\ge\)0
\(\Rightarrow\)(a+b)2\(\ge\)4ab
Mà a+b=6-c (cmt)
ab= 9-6c+c2 (cmt)
\(\Rightarrow\)(6-c)2\(\ge\)4(9-6c+c2)
\(\Rightarrow\)36+c2-12c\(\ge\)36-24c+4c2
\(\Rightarrow\)36+c2-12c-36+24c-4c2\(\ge\)0
\(\Rightarrow\)-3c2+12c\(\ge\)0
\(\Rightarrow\)3c2-12c\(\le\)0
\(\Rightarrow\)3c(c-4)\(\le\)0
\(\Rightarrow\)c(c-4)\(\le\)0
\(\Rightarrow\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}}\)hoặc\(\hept{\begin{cases}c\le0\\c-4\ge0\end{cases}}\)
*\(\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}c\ge0\\c\le4\end{cases}\Leftrightarrow}0\le c\le4}\)
*
1 ) Đề bài > not \(\ge\)
Giả sử đpcm là đúng , khi đó , ta có :
\(x^2+y^2+8>xy+2x+2y\)
\(\Leftrightarrow2x^2+2y^2+16>2xy+4x+4y\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-4x+4\right)+\left(y^2-4y+4\right)+8>0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2+8>0\left(1\right)\)
Do \(\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2+8\ge8>0\forall x;y\left(2\right)\)
Từ ( 1 ) ; ( 2 ) => Điều giả sử là đúng => đpcm
2 ) ĐK : a ; b ; c không âm
Áp dụng BĐT phụ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) ( cái này bạn áp dụng BĐT Cô - si để c/m ) , ta có :
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{9}{a+b+b+c+c+a}=\frac{9}{6.2}=\frac{3}{4}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=2\)
3 ) Áp dụng BĐT Cô - si cho các cặp số không âm , ta có :
\(x^2+y^2\ge2xy;y^2+z^2\ge2yz;x^2+z^2\ge2xz\)
\(\Rightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2xz\left(1\right)\)
\(x^2+1\ge2x;y^2+1\ge2y;z^2+1\ge2z\)
\(\Rightarrow x^2+y^2+z^2+3\ge2x+2y+2z\left(2\right)\)
Từ ( 1 ) ; ( 2 ) , ta có : \(2x^2+2y^2+2z^2+x^2+y^2+z^2+3\ge2xy+2yz+2xz+2x+2y+2z\)
\(\Rightarrow3\left(x^2+y^2+z^2+1\right)\ge2\left(x+y+z+2xy+2xz+2yz\right)=2.6=12\)
\(\Rightarrow x^2+y^2+z^2+1\ge4\)
\(\Rightarrow x^2+y^2+z^2\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=z=1\)