K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2017

hi kết bạn nha

Bài 3:

a) Ta có: \(x^2+3x+3\)

\(=x^2+2\cdot x\cdot\frac{3}{2}+\frac{9}{4}+\frac{3}{4}\)

\(=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\)

Ta có: \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(\left(x+\frac{3}{2}\right)^2=0\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=\frac{-3}{2}\)

Vậy: Giá trị nhỏ nhất của biểu thức \(P=x^2+3x+3\)\(\frac{3}{4}\) khi \(x=\frac{-3}{2}\)

b) Ta có: \(Q=x^2+2y^2+2xy-2y\)

\(=x^2+2xy+y^2+y^2-2y+1-1\)

\(=\left(x+y\right)^2+\left(y-1\right)^2-1\)

Ta có: \(\left(x+y\right)^2\ge0\forall x,y\)

\(\left(y-1\right)^2\ge0\forall y\)

Do đó: \(\left(x+y\right)^2+\left(y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(Q=x^2+2y^2+2xy-2y\) là -1 khi x=-1 và y=1

21 tháng 4 2020

Cảm ơn ạ =)

16 tháng 3 2019

1 ) Đề bài > not \(\ge\)

Giả sử đpcm là đúng , khi đó , ta có :

\(x^2+y^2+8>xy+2x+2y\)

\(\Leftrightarrow2x^2+2y^2+16>2xy+4x+4y\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-4x+4\right)+\left(y^2-4y+4\right)+8>0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2+8>0\left(1\right)\)

Do \(\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2+8\ge8>0\forall x;y\left(2\right)\)

Từ ( 1 ) ; ( 2 ) => Điều giả sử là đúng => đpcm

2 ) ĐK : a ; b ; c không âm

Áp dụng BĐT phụ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) ( cái này bạn áp dụng BĐT Cô - si để c/m ) , ta có :

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{9}{a+b+b+c+c+a}=\frac{9}{6.2}=\frac{3}{4}\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=2\)

3 ) Áp dụng BĐT Cô - si cho các cặp số không âm , ta có :

\(x^2+y^2\ge2xy;y^2+z^2\ge2yz;x^2+z^2\ge2xz\)

\(\Rightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2xz\left(1\right)\)

\(x^2+1\ge2x;y^2+1\ge2y;z^2+1\ge2z\)

\(\Rightarrow x^2+y^2+z^2+3\ge2x+2y+2z\left(2\right)\)

Từ ( 1 ) ; ( 2 ) , ta có : \(2x^2+2y^2+2z^2+x^2+y^2+z^2+3\ge2xy+2yz+2xz+2x+2y+2z\)

\(\Rightarrow3\left(x^2+y^2+z^2+1\right)\ge2\left(x+y+z+2xy+2xz+2yz\right)=2.6=12\)

\(\Rightarrow x^2+y^2+z^2+1\ge4\)

\(\Rightarrow x^2+y^2+z^2\ge3\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=z=1\)

10 tháng 2 2020

Ta có : \(x+y+z=0\)

\(\Leftrightarrow x+y=-z\) \(\Leftrightarrow\left(x+y\right)^3=-z^3\)

\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=-z^3\)

\(\Leftrightarrow x^3+y^3+z^3=-3xy\left(x+y\right)\)

\(\Leftrightarrow x^3+y^3+z^3=3xyz\)

* Áp dụng :
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow ab+bc+ca=0\)
\(\Leftrightarrow a^3b^3+b^3c^3+c^3a^3=3ab.bc.ca=3a^2b^2c^2\)
Khi đó \(M=\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ca}{b^2}=\frac{a^3b^3+b^3c^3+c^3a^3}{a^2b^2c^2}=\frac{3a^2b^2c^2}{a^2b^2c^2}=3\)