Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{100.100}\)
=> \(A< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)
=> \(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
=> \(A< 1-\frac{1}{100}\)
=> \(A< \frac{99}{100}< 1\)
=> \(A< 1\left(ĐPCM\right).\)
Ta có : \(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2};\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2.3};...;\frac{1}{100^2}=\frac{1}{100.100}< \frac{1}{99.100}\)
=> A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\)(ĐPCM)
ta thấy :
\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};......;\frac{1}{100^2}< \frac{1}{99.100}\)
và \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\) <\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)
mà \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
=\(\frac{1}{1}-\frac{1}{100}\)
=\(\frac{99}{100}\)<1
=>\(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{100^2}\)<1
Ta có:
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\) = \(\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{100.100}\) \(< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\) \(=1-\frac{1}{100}=\frac{99}{100}\)
Ta có:
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\left(đpcm\right)\)
Mình nghĩ CM < 1 :
Đặt \(S=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\) ta có :
\(S=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(S< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(S< 1-\frac{1}{100}< 1\)
\(\Rightarrow\)\(S< 1\) ( đpcm )
Vậy \(S< 1\)
Chúc bạn học tốt ~
Chứng minh cái gì vậy bạn
Chứng minh nó nhỏ hơn 1 à