Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn sai đề rồi, phải là P = 70(71^9 + 71^8 + ... + 71^2 + 72) + 1 mới đúng
Ta có: P = 70(71^9 + 71^8 + ... + 71^2 + 72) + 1
= (71 - 1)(71^9 + 71^8 + ... + 71^2 + 71 + 1) + 1
= (71^10 - 1^10) + 1
= 71^10 -1 + 1
= 71^10 = (71^5)^2
Vậy P là một số chính phương.
k cho mik nha.
b)\(N=\dfrac{yz}{x^2}+\dfrac{zx}{y^2}+\dfrac{xy}{z^2}\)
\(N=\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}\)
\(N=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\)
Ta cm đẳng thức sau:\(x^3+y^3+z^3=3xyz\Leftrightarrow x+y+z=0\)
ĐT\(\Leftrightarrow x^3+y^3-3xyz=-z^3\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-3xy=-z^3\)
\(\Leftrightarrow-zx^2+xyz-zy^2-3xyz=-z^3\)
\(\Leftrightarrow x^2+2xy+y^2=z^2\)
\(\Leftrightarrow\left(x+y\right)^2=z^2\)
\(\Leftrightarrow\left(-z\right)^2=z^2\)(luôn đúng)
Áp dụng\(\Rightarrow N=xyz.\dfrac{3}{xyz}=3\)
a, (M-1)/70-71=m
m=(71^9+71^8....71+1)
71m=71^10+...71^2+71
70m=71^10-1
(M-1)/70=71^10+70
M-1=70(71^10+70)
M=70(71^10+70)-1
Bài 1:
Áp dụng hằng đẳng thức số 5 ta có:
\(1-\left(1-3\right)^3=1-\left(1-3.1.3+3.1.3^2-3^2\right)\)
\(=1-\left(1-9+27-9\right)=1-1+9-27+9=-9\)
Chúc bạn học tốt!!!
Bài 1:
\(1-\left(1-3\right)^3=1+2^3=\left(1+2\right)\left(1-2+4\right)\)
hđt: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
Bài 3:
a, \(A=4x-x^2=-x^2+4x\)
\(=-\left(x^2-4x+4-4\right)\)
\(=-\left[\left(x-2\right)^2-4\right]\)
\(=-\left(x-2\right)^2+4\)
Ta có: \(-\left(x-2\right)^2\le0\)
\(\Leftrightarrow A=-\left(x-2\right)^2+4\le4\)
Dấu " = " xảy ra khi \(-\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy \(MAX_A=4\) khi x = 2
b, \(B=x-x^2=-x^2+x\)
\(=-\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}\right)\)
\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\right]\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
Dấu " = " khi \(-\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(MAX_B=\dfrac{1}{4}\) khi \(x=\dfrac{1}{2}\)
c, \(C=2x-2x^2-5\)
\(=-2\left(x^2-x+\dfrac{5}{2}\right)\)
\(=-2\left(x^2-2.x\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{9}{4}\right)\)
\(=-2\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\right]\)
\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le\dfrac{-9}{2}\)
Dấu " = " khi \(-2\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(MAX_C=\dfrac{-9}{2}\) khi \(x=\dfrac{1}{2}\)
Bài 4:
\(M=x^2+y^2-x+6y+10\)
\(=\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)
Ta có: \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)
\(\Leftrightarrow M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
Vậy \(MIN_M=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2},y=-3\)
\(A=x^5-70x^4-70x^3-70x^2-70x+34\)
\(=x^5-71x^4+x^4-71x^3+x^3-71x^2+x^2-71x+x-71+105\)
\(=x^4\left(x-71\right)+x^3\left(x-71\right)+x^2\left(x-71\right)+x\left(x-71\right)+\left(x-71\right)+105\)
\(=\left(x^4+x^3+x^2+x+1\right)\left(x-71\right)+105\)
Thay x = 71\(\Rightarrow A=105\)
Vậy...
Ta có \(\widehat{A}-\widehat{D}=20^o\); \(\widehat{A}+\widehat{D}=180^o\)
Từ \(\widehat{A}-\widehat{D}=20^o\)
\(\Rightarrow\widehat{A}=20^o+\widehat{D}\)
Nên \(\widehat{A}+\widehat{D}=20^o+\widehat{D}+\widehat{D}=20^o+2\widehat{D}=180^o\)
\(\Rightarrow2\widehat{D}=160^o\Rightarrow\widehat{D}=80^o\)
Thay \(\widehat{D}=80^o\) vào \(\widehat{A}=20^o+\widehat{D}\) ta được \(\widehat{A}=20^o+80^o=100^o\)
Lại có \(\widehat{B}=2\widehat{C}\) ; \(\widehat{B}+\widehat{C}=180^o\)
nên \(2\widehat{C}+\widehat{C}=180^o\)
hay \(3\widehat{C}=180^o\) => \(\widehat{C}=60^o\)
Do đó \(\widehat{B}=2\widehat{C}=2.60^o\)
=> \(\widehat{B}=120^o.\)