K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2018

b)\(N=\dfrac{yz}{x^2}+\dfrac{zx}{y^2}+\dfrac{xy}{z^2}\)

\(N=\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}\)

\(N=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\)

Ta cm đẳng thức sau:\(x^3+y^3+z^3=3xyz\Leftrightarrow x+y+z=0\)

ĐT\(\Leftrightarrow x^3+y^3-3xyz=-z^3\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-3xy=-z^3\)

\(\Leftrightarrow-zx^2+xyz-zy^2-3xyz=-z^3\)

\(\Leftrightarrow x^2+2xy+y^2=z^2\)

\(\Leftrightarrow\left(x+y\right)^2=z^2\)

\(\Leftrightarrow\left(-z\right)^2=z^2\)(luôn đúng)

Áp dụng\(\Rightarrow N=xyz.\dfrac{3}{xyz}=3\)

14 tháng 5 2018

a, (M-1)/70-71=m

m=(71^9+71^8....71+1)

71m=71^10+...71^2+71

70m=71^10-1

(M-1)/70=71^10+70

M-1=70(71^10+70)

M=70(71^10+70)-1

22 tháng 8 2017

Ta có: x= 71 => x-1=70

Thay x-1=70 vào BT A ta được:

A= x5 - ( x-1) x4 -....- ( x-1 ) x + 34

A= x5 - x5 +x4 -...- x2+ x +34

A= x + 34

Thay x=71 vào BT A ta được :

A= 71 + 34 = 105

18 tháng 6 2017

Bài 1:

Áp dụng hằng đẳng thức số 5 ta có:

\(1-\left(1-3\right)^3=1-\left(1-3.1.3+3.1.3^2-3^2\right)\)

\(=1-\left(1-9+27-9\right)=1-1+9-27+9=-9\)

Chúc bạn học tốt!!!

18 tháng 6 2017

Bài 1:

\(1-\left(1-3\right)^3=1+2^3=\left(1+2\right)\left(1-2+4\right)\)

hđt: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

Bài 3:

a, \(A=4x-x^2=-x^2+4x\)

\(=-\left(x^2-4x+4-4\right)\)

\(=-\left[\left(x-2\right)^2-4\right]\)

\(=-\left(x-2\right)^2+4\)

Ta có: \(-\left(x-2\right)^2\le0\)

\(\Leftrightarrow A=-\left(x-2\right)^2+4\le4\)

Dấu " = " xảy ra khi \(-\left(x-2\right)^2=0\Leftrightarrow x=2\)

Vậy \(MAX_A=4\) khi x = 2

b, \(B=x-x^2=-x^2+x\)

\(=-\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}\right)\)

\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\right]\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

Dấu " = " khi \(-\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(MAX_B=\dfrac{1}{4}\) khi \(x=\dfrac{1}{2}\)

c, \(C=2x-2x^2-5\)

\(=-2\left(x^2-x+\dfrac{5}{2}\right)\)

\(=-2\left(x^2-2.x\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{9}{4}\right)\)

\(=-2\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\right]\)

\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le\dfrac{-9}{2}\)

Dấu " = " khi \(-2\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(MAX_C=\dfrac{-9}{2}\) khi \(x=\dfrac{1}{2}\)

Bài 4:

\(M=x^2+y^2-x+6y+10\)

\(=\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)

Ta có: \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)

\(\Leftrightarrow M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

Vậy \(MIN_M=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2},y=-3\)

27 tháng 8 2019

Cách 1: Ta có x=71=>x-71=0

A=x5-71x4+x4-71x3+x3-71x2+x2-71x+x-71+100

=x4(x-71)+x3(x-71)+x2(x-71)+x(x-71)+(x-71)+100

=100

Vậy A=100 tại giá trị x=71

Cách 2: vì x=71=>x-1=70

A=x5-(x-1)x4-(x-1)x3-(x-1)x2-(x-1)x+29

=x5-x5+x4-x4+x3-x3+x2-x2+x+29

=x+29=71+29=100

Vậy A=100 tại giá trị x=71

Cách 3: Thay trực tiếp x=71 vào biểu thức A, cách này không hay cho lắm

27 tháng 8 2019

Ta có x=71=>x-71=0

A=x5-71x4+x4-71x3+x3-71x2+x2-71x+x-71+100

=x4(x-71)+x3(x-71)+x2(x-71)+x(x-71)+(x-71)+100

=100

Vậy A=100 tại giá trị x=71

.,.............học tốt................

28 tháng 7 2017

\(\left(x+1\right)\left(x^2+1-x\right)-x\left(x^2-5\right)=71\)

\(x^3+x-x^2+x^2+1-x-\left(x^3-5x\right)=71\)

\(x^3+x-x^2+x^2+1-x-x^3+5x=71\)

\(5x+1=71\)

\(5x=70\)

\(x=70:5\)

x=14

28 tháng 7 2017

(x+1)(x+ 1 - x) - x(x- 5) = 71

\(\left(x+1\right)\left(x^2-x1+1\right)-x^3+5x=71\)

\(x^3+1^3-x^3+5x=71\)

\(1+5x=71\)

\(5x=71-1=70\)

\(x=70:5=14\)

Vậy x = 14

25 tháng 7 2017

\(a.\left(x+1\right)\left(x^2-x+1\right)-x\left(x^2-5\right)=71\)

\(\Leftrightarrow x^3+1-x^3+5x=71\)

\(\Leftrightarrow5x=71-1\)

\(\Leftrightarrow5x=70\)

\(\Leftrightarrow x=70:5=14\)

\(b.\left(2x-3\right)^3-8x\left(x-1\right)^2+4x\left(4x+1\right)+27=0\)

\(\Leftrightarrow8x^3-12x^2+18x-27-8x\left(x^2-2x+1\right)+16x^2+4x+27=0\)

\(\Leftrightarrow8x^3-12x^2+18x-27-8x^3+16x^2-8x+16x^2+4x+27=0\)

\(\Leftrightarrow20x^2+14x=0\)

\(\Leftrightarrow x\left(20x+14\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\20x+14=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{7}{10}\end{cases}}}\)

25 tháng 7 2017

a) ta có: (x+1)(x^2 -x+1) -x(x^2 -5)=71

          <=>x^3 +1 -x^3 +5x=71

         <=>5x=70

         <=>x=14

b) ta có:(2x-3)^3 -8x(x-1)^2 +4x(4x+1)+27=0

        <=>[ (2x-3)^3  +27)]  -  [ 8x(x-1)^2  -4x(4x+1)]=0

       <=> (2x-3+3)[ (2x-3)^2 - (2x-3).3  +3^2]   - 2x [ 4(x^2 -2x +1) -2(4x+1)]=0

       <=>2x( 4.x^2 - 12x +9 - 6x +9 +9)   -  2x( 4.x^2 -8x+4 -8x -2)=0

       <=>2x(4.x^2  -18x +27)  -  2x(4.x^2 -16x +2)=0

      <=>2x(4.x^2 -18x+27 -4.x^2 +16x-2)=0

     <=>2x(25-2x)=0

<=>x=0 hoặc 25-2x=0 <=> x=0 hoặc x=25/2

14 tháng 8 2017

Aaaaa làm lại nha =)) tính sai .-.

Đặt 70 = x - 1 ; 34 = x - 37. Ta có :

$A=x^5-(x-1)x^4-(x-1)x^3-(x-1)x^2-(x-1)x+x-37$

$=>A=x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x+x-37$

$=>A=2x-37=2.71-37=105$

14 tháng 8 2017

Đặt 70 = x - 1 ; 34 = x - 37. Ta có :

$A=x^5-(x-1)x^4-(x-1)x^3-(x-1)x^2-(x-1)x+34$

$=>A=x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-x-37$

$=>A=-37$

15 tháng 9 2018

a ) Nếu \(x=71\) \(\Rightarrow70=x-1\)

Thay \(70=x-1\) vào A , ta được :

\(A=x^5-\left(x-1\right)x^4-\left(x-1\right)x^3-\left(x-1\right)x^2-\left(x-1\right)x\)

\(=x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x\)

\(=x\)

\(=71\)

Vậy \(A=71\) tại \(x=71\)

b ) Ta có : \(x=35\)

\(\Rightarrow\left\{{}\begin{matrix}36=x+1\\37=x+2\\69=2x-1\\34=x-1\end{matrix}\right.\) ( * )

Thay ( * ) vào B , ta được :

\(B=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x-1\right)x^2-\left(x-1\right)x+15\)

\(=x^5-x^5-x^4+x^4+2x^3-2x^3+x^2-x^2+x+15\)

\(=x+15\)

\(=35+15=50\)

Vậy \(B=50\) tại \(x=35\)

15 tháng 9 2018

Nhầm mọi người giúp mk nhoa