\(n^4+6n^3+11n^2+6n\)⋮24

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 11 2021

Lời giải:

$n^4+6n^3+11n^2+6n=n(n^3+6n^2+11n+6)$

$=n(n+1)(n+2)(n+3)$

Vì $n,n+1, n+2, n+3$ là 4 số nguyên liên tiếp nên trong đây sẽ có:

- Một số chia hết cho 2

- Một số chia hết cho 4

- Một số chia hết cho 3

Mà $2,3,4$ đôi một nguyên tố cùng nhau nên:

$\Rightarrow n(n+1)(n+2)(n+3)\vdots (2.3.4=24)$

15 tháng 11 2021

 
AH
Akai Haruma
Giáo viên
20 tháng 3 2019

Lời giải:

Ta có:

\(M=n^4+6n^3+11n^2+6n=n(n^3+6n^2+11n+6)\)

\(=n[n^2(n+1)+5n(n+1)+6(n+1)]\)

\(=n(n+1)(n^2+5n+6)\)

\(=n(n+1)[n(n+2)+3(n+2)]\)

\(=n(n+1)(n+2)(n+3)\)

Trong 4 số nguyên liên tiếp $n,n+1,n+2,n+3$ có ít nhất một số chia hết cho $3$ nên \(M=n(n+1)(n+2)(n+3)\vdots 3(*)\)

Trong 4 số nguyên liên tiếp, bao giờ cũng có 2 số chẵn, một số lẻ. Trong 2 số chẵn liên tiếp bào giờ cũng có 1 số chia hết cho $2$, một số chia hết cho $4$ nên \(M=n(n+1)(n+2)(n+3)\vdots (2.4=8)(**)\)

Từ $(*)$ và $(**)$, mà $(3,8)=1$ nên $M\vdots (3.8=24)$

Ta có đpcm.

25 tháng 6 2018

n4 +6n3 + 11n2 + 6n

= n ( n3 + 2n2 + 4n2 + 8n + 3n + 6)

= n (n+2)(n2 + 4n + 3)

=n(n+2)(n+1)(n+3) là tích 4 số tự nhiên liên tiếp nên chia hết cho 8 và 3.

Mà (3;8) = 1 => n4 +6n3 + 11n2 + 6n chia hết cho 24

25 tháng 6 2018

Ta có :

\(n^4+6n^3+11n^2+6n\)

\(=n^4+2n^3+4n^3+8n^2+3n^2+6n\)

\(=n^3\left(n+2\right)+4n^2\left(n+2\right)+3n\left(n+2\right)\)

\(=\left(n+2\right)\left(n^3+4n^2+3n\right)\)

\(=\left(n+2\right)\left(n^3+n^2+3n^2+3n\right)\)

\(=\left(n+2\right)\left[n^2\left(n+1\right)+3n\left(n+1\right)\right]\)

\(=\left(n+2\right)\left(n+1\right)\left(n^2+3n\right)\)

\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)là tích của 4 số tự nhiên liên tiếp .

Nên \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮24\)

\(\Rightarrow n^4+6n^3+11n^2+6n⋮24\) ( đpcm )

22 tháng 9 2016

\(A=n^4+6n^3+11n^2+6n\)

    \(=n\left(n^3+6n^2+11n+6\right)\)

    \(=n\left(n^3+n^2+5n^2+5n+6n+6\right)\)

    \(=n\left[n^2\left(n+1\right)+5n\left(n+1\right)+6\left(n+1\right)\right]\)

    \(=n\left(n+1\right)\left(n^2+5n+6\right)\)

    \(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

Do đây là tích 4 số nguyên liên tiếp nên nó vừa chia hết cho \(2,3,4\Rightarrow A\) chia hết cho 24

    

15 tháng 7 2016

a) Với n=1 thì \(7^{^{ }3}+8^3\) chia hết cho \(7^2-56+8^2nên\) chia hết cho 19

Giả sử \(7^{k+2}+8^{k+2}\) chia hết cho 19 (k >_ 1)

Xét \(7^{k=3}+8^{2k+3}=7.7^{k+2}+64.8^{2k+1}=7.\left(7^{k+2}+8^{2k+1}\right)+57.8^{2k+1}\) chia hết cho 19

 

15 tháng 7 2016

Muộn rồi b chiều tớ hứa là sẽ làm 4h30' chiều

26 tháng 10 2016

a)\(2^k>2k+1\left(1\right)\)

Với n=3, ta có:\(VT=8;VP=7\), nên (1) đúng nới n=3

Giả sử (1) đúng với \(k=n\), tức là \(2^n>2n+1\left(n\in N\text{*};n\ge3\right)\)

Ta sẽ chứng minh (1) đúng với \(k=n+1\) tức là phải chứng minh \(2^{n+1}>2\left(n+1\right)+1\)

Thật vậy, từ giả thiết quy nạp, ta có:

\(2^{n+1}=2\cdot2^n>2\left(2n+1\right)=4n+2=2n+3+\left(2n-1\right)>2n+3\), do \(\left(n\in N\text{*},n\ge3\right)\)

Vậy (1) đúng với mọi số nguyên \(k\ge3\)

 

 

26 tháng 10 2016

b)\(n^4+6n^3+11n^2+6n\)

\(=n\left(n^3+6n^2+11n+6\right)\)

\(=n\left(n^3+n^2+5n^2+5n+6n+6\right)\)

\(=n\left[\left(n^3+n^2\right)+\left(5n^2+5n\right)+\left(6n+6\right)\right]\)

\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮120\)

\(120⋮24\) =>Đpcm