K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2020

Nếu có 2 số có cùng số dư khi chia hết cho 100 thì bài toán được giải.Giả sử không có hai số nào cùng số dư khi chia cho 100.Khi đó,có ít nhất 51 số khi chia hết cho 100 có số dư khác 50 là \(a_1,a_2,...,a_{50}\)

Đặt \(b_i=-a_i\left(1\le i\le51\right)\)

Xét 102 số : \(a_i\)và \(b_i\)

Theo nguyên tắc của Dirichlet thì tồn tại \(i\ne j\)sao cho \(a_i\equiv b_j\left(mod100\right)\)

=> \(a_i+a_j⋮100\)

6 tháng 3 2018

Gọi 4 số cần tìm là a, b, c, d

với 0<a<b<c<d

Vì tổng của hai số bất kì chia hết cho 2 và tổng của ba số bất kì chia hết cho 3 nên các số a, b, c, d khi chia cho 2 hoặc 3 đều phải có cùng số dư

Để a+b+c+d có giá trị nhỏ nhất thì a, b, c, d phải nhỏ nhất và chia 2 hoặc 3 dư 1

Suy ra: a=1

b=7

c=13

d=19

Vậy giá trị nhỏ nhất của tổng 4 số này là: 1+7+13+19=40

6 tháng 3 2018

Gọi 4 số cần tìm là a, b, c, d (a, b, c, d thuộc n*)

với 0<a<b<c<d

Vì tổng của hai số bất kì chia hết cho 2 và tổng của ba số bất kì chia hết cho 3 nên các số a, b, c, d khi chia cho 2 hoặc 3 đều phải có cùng số dư

Để a+b+c+d có giá trị nhỏ nhất thì a, b, c, d phải nhỏ nhất và chia 2 hoặc 3 dư 1

Suy ra: a=1

b=7

c=13

d=19

Vậy giá trị nhỏ nhất của tổng 4 số này là: 1+7+13+19=40

Nếu cảm thấy đúng thì k cho mình cái!

6 tháng 9 2016

bạn lên mạng coi có nhiều bài tương tự á

NM
14 tháng 1 2022

gọi 

\(b_1,b_2,..b_n\) là phép chia lấy phần dư của các \(a_1,a_2,...,a_n\) cho n

.Giả sử không có số nào chia hết cho n, thì các \(b_i\) đều là các số tự nhiện nằm trong  khoảng \(1\le b_i\le n-1\)

do có n phần tử \(b_i\) mà chỉ có n-1 giá trị nên theo nguyên lí dirichlet tồn tại hai số \(b_i\) \(=b_j\)

Hay nói cách khác \(a_i\text{ và }a_j\text{ đồng dư mode n}\)

hay hiệu \(a_i-a_j\) chia hết cho n

vậy ta có điều phải chứng minh

13 tháng 8 2015

Trả lời đi ,minh xin thanks ngay