\(\frac{2_{ }!+\sqrt{1}}{2!}\)+\(\frac{3!+\sqrt{4}}{3!}\)+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2019

ai lam nhanh ma dung minh h cho 

cac ban nho giai ho minh nhe

9 tháng 3 2019

\(\frac{2018}{\sqrt{2017}}+\frac{2017}{\sqrt{2018}}=\frac{2017}{\sqrt{2017}}+\frac{2018}{\sqrt{2018}}+\frac{1}{\sqrt{2017}}-\frac{1}{\sqrt{2018}}=\sqrt{2017}+\sqrt{2018}\)

\(\frac{1}{\sqrt{2017}}>\frac{1}{2018}\Rightarrow VT>\sqrt{2017}+\sqrt{2018}\)

30 tháng 7 2018

\(x=\frac{2^{2018}+2^{2019}}{2^{2017}+2^{2018}}=\frac{2^{2019}}{2^{2017}}=\frac{2^2}{2}=\frac{4}{2}=2.\)

\(y=\sqrt{10^2-8^2}-\sqrt{3^2+4^2}\)

  \(=\sqrt{100-64}-\sqrt{9+16}\)

  \(=\sqrt{36}-\sqrt{25}\)

\(=6-5=1\)

5 tháng 12 2018

\(\text{a,}\frac{2}{13}.\frac{-5}{3}+\frac{11}{13}.\frac{-5}{3}=-\frac{5}{3}\left(\frac{2}{13}+\frac{11}{13}\right)\)

                                              \(=\frac{-5}{3}.\frac{13}{13}\)

                                               \(=-\frac{5}{3}\)

\(\text{b,}\left(-\frac{1}{3}\right)^2+\left(-\frac{1}{3}\right)^3.27+\left(\frac{-2017}{2018}\right)^0=\frac{1}{9}-\frac{1}{27}.27+1\)

                                                                                     \(=\frac{1}{9}-1+1\)

                                                                                        \(=\frac{1}{9}\)

\(\text{c,}1,2-\sqrt{\frac{1}{4}}:1\frac{1}{20}+\left|\frac{3}{4}-1,25\right|-\left(\frac{-3}{2}\right)^2=\frac{6}{5}-\frac{1}{2}:\frac{21}{20}+\left|\frac{3}{4}-\frac{5}{4}\right|-\frac{9}{4}\)

                                                                                                  \(=\frac{6}{5}-\frac{10}{21}+\frac{1}{2}-\frac{9}{4}\)

                                                                                                   \(=\frac{-431}{420}\)

5 tháng 12 2018

Thanks you !

1 tháng 9 2020

a) Ta có : \(\frac{-3}{100}< 0< \frac{2}{3}\)

\(\Rightarrow\frac{-3}{100}< \frac{2}{3}\)

b) Ta có : \(\frac{267}{268}< 1< \frac{1347}{1343}\)

\(\Rightarrow\frac{267}{268}< \frac{1347}{1343}\)

\(\Rightarrow\frac{267}{-268}< \frac{-1347}{1343}\)

c) Ta có : \(\frac{2017.2018-1}{2017.2018}=\frac{2017.2018}{2017.2018}-\frac{1}{2017.2018}=1-\frac{1}{2017.2018}\)

                 \(\frac{2018.2019-1}{2018.2019}=\frac{2018.2019}{2018.2019}-\frac{1}{2018.2019}=1-\frac{1}{2018.2019}\)

mà \(2017.2018< 2018.2019\)

\(\Rightarrow\frac{1}{2017.2018}>\frac{1}{2018.2019}\)

\(\Rightarrow1-\frac{1}{2017.2018}< 1-\frac{1}{2018.2019}\)

\(\Rightarrow\frac{2017.2018-1}{2017.2018}< \frac{2018.2019-1}{2018.2019}\)

d) Ta có : \(\frac{2017.2018}{2017.2018+1}=\frac{2017.2018+1}{2017.2018+1}-\frac{1}{2017.2018+1}=1-\frac{1}{2017.2018+1}\)

                 \(\frac{2018.2019}{2018.2019+1}=\frac{2018.2019+1}{2018.2019+1}-\frac{1}{2018.2019+1}=1-\frac{1}{2018.2019+1}\)

mà \(2017.2018+1< 2018.2019+1\)

\(\Rightarrow\frac{1}{2017.2018+1}>\frac{1}{2018.2019+1}\)

\(\Rightarrow1-\frac{1}{2017.2018+1}< 1-\frac{1}{2018.2019+1}\)

\(\Rightarrow\frac{2017.2018}{2017.2018+1}< \frac{2018.2019}{2018.2019+1}\)

 

7 tháng 2 2020

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2020}}{\frac{1}{2019}+\frac{2}{2018}+\frac{3}{2017}+...+\frac{2018}{2}+\frac{2019}{1}}\)

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2020}}{\frac{1}{2019}+1+\frac{2}{2018}+1+\frac{3}{2017}+1+...+\frac{2018}{2}+1+1}\)

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2020}}{\frac{2020}{2019}+\frac{2020}{2018}+\frac{2020}{2017}+...+\frac{2020}{2}+\frac{2020}{2020}}\)

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2020}}{2020\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2020}\right)}\)

\(\frac{A}{B}=\frac{1}{2020}\)

22 tháng 10 2017

Giúp mình với!!!

27 tháng 12 2017

Mình lớp 6

29 tháng 10 2020

a) \(\left(\frac{2^2}{5}\right)+5\frac{1}{2}.\left(4,5-2,5\right)+\frac{2^3}{-4}\)

\(=\frac{4}{5}+\frac{11}{2}.2+\frac{-8}{4}\)

\(=\frac{4}{5}+11-2\)

\(=\frac{4}{5}+9\)

\(=\frac{49}{9}\)

b) \(\left(-2^3\right)+\frac{1}{2}:\frac{1}{8}-\sqrt{25}+\left|-64\right|\)

\(=-8+4-5+64\)

= 55

c) \(\frac{\sqrt{3^2+\sqrt{39}^2}}{\sqrt{91^2}-\sqrt{\left(-7\right)^2}}\)

\(=\frac{\sqrt{9+39}}{91-\sqrt{49}}\)

\(=\frac{\sqrt{48}}{91-7}\)

\(=\frac{4\sqrt{3}}{84}\)

\(=\frac{\sqrt{3}}{41}\)

d) Xem lại đề nhé em!

e) \(\sqrt{25}-3\sqrt{\frac{4}{9}}\)

\(=5-3.\frac{2}{3}\)

= 5 - 2

= 3

h) \(\left(-3^2\right).\frac{1}{3}-\sqrt{49}+\left(5^3\right):\sqrt{25}\)

\(=-9.\frac{1}{3}-7+125:5\)

\(=-3-7+25\)

= 15

3 tháng 6 2020

ta có B= 1/2018+2/2017+3/2016+...+2017/2+2018/1

=> B=1+1+1+..+1( 2018 số hạng 1)+ 1/2018+..+2017/2

=> B= (1+1/2018)+(1+2/2017)+(1+3/2016)+...+(1+2017/2)+ 2019/2019

=> B= 2019 *(1/2+1/3+...+1/2019)

=> A/B= (1/2+1/3+...+1/2019)/2019*(1/2+1/3+..+1/2019)

=> A/B= 1/2019