K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2018

\(A=x^2+4x^4\)

\(\Rightarrow A=\left(2x^2\right)^2+4x^3+\left(x\right)^2-4x^3\)

\(\Rightarrow\left(2x^2+x\right)^2-4x^3\)

=> Ko là số chính phương

\(B=y^2-12y+36\)

\(B=y^2-2.6y+6^2\)

\(\Rightarrow B=\left(y-6\right)^2\)

=> Là số chính phương

1 tháng 7 2018

\(a)\) \(A=x\left(x^3-1\right)-x^2\left(x^2+1\right)-5\left(x-1\right)\)

\(A=x^4-x-x^4-x^2-5x+5\)

\(A=-x^2-6x+5\)

Vậy \(A=-x^2-6x+5\)

\(B=4x\left(x+2\right)-8\left(x+4\right)-4\)

\(B=4x^2+8x-8x-32-4\)

\(B=4x^2-36\)

Vậy \(B=4x^2-36\)

\(b)\) Ta có : 

\(A=-x^2-6x+5\)

\(-A=x^2+6x-5\)

\(-A=\left(x^2+6x+9\right)-14\)

\(-A=\left(x+3\right)^2-14\ge-14\)

\(A=-\left(x+3\right)^2+14\le14\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x+3\right)^2=0\)

\(\Leftrightarrow\)\(x+3=0\)

\(\Leftrightarrow\)\(x=-3\)

Vậy GTLN của \(A\) là \(14\) khi \(x=-3\)

Chúc bạn học tốt ~ 

5 tháng 8 2020

a)

\(A=\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)

\(=x^3-3x^2+9x+3x^2-9x+27-54-x^3\)

\(=-27\)

or

\(A=x^3+27-54-x^3=-27\)

b)

\(B=\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(=8x^3+y^3-8x^3+y^3=2y^3\)

c)

\(C=\left(2x+1\right)^2+\left(1-3x\right)^2+2\left(2x+1\right)\left(3x-1\right)\)

\(=\left(2x+1+3x-1\right)^2=\left(5x\right)^2=25x^2\)

d)

\(D=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)

\(=x^3-8-\left(x-1\right)^3+3\left(x-1\right)\left(x+1\right)\)

\(=6x^2-3x-10\)

25 tháng 7 2017

143. a) \(-6x^n.y^n.\left(-\dfrac{1}{18}x^{2-n}+\dfrac{1}{72}y^{5-n}\right)\)

\(=-6.\left(-\dfrac{1}{18}\right)x^n.x^{2-n}.y^n+\left(-6\right).\dfrac{1}{27}x^n.y^n.y^{5-n}\)

\(=\dfrac{1}{3}x^{n+2-n}y^n-\dfrac{2}{9}x^n.y^{n+5-n}\)

\(=\dfrac{1}{3}x^2y^n-\dfrac{2}{9}x^ny^5\)

b) Ta có: \(\left(5x^2-2y^2-2xy\right)\left(-xy-x^2+7y^2\right)\)

\(=5x^2\left(-xy\right)+5x^2.\left(-x^2\right)+5x^2.7y^2-2y^2.\left(-xy\right)-2y^2.\left(-x^2\right)-2y^2.7y^2-2xy.\left(-xy\right)-2xy\left(-x^2\right)-2xy.7y^2\)

\(=-5x^3y-5x^4+35x^2y^2+2xy^3+2x^2y^2-14y^4+2x^2y^2+2x^3y-14xy^3\)

Rút gọn các đa thức đồng dạng, ta có kết quả:

\(-5x^4-3x^3y+39x^2y^2-12xy^3-14y^4\)

Kết quả đã được xếp theo lũy thừa giảm dần của x

18 tháng 7 2023

(\(x-3\))+ (2y - 1)2 = 0

          (\(x\) - 3)2 ≥ 0 ∀ \(x\)

        (2y - 1)2 ≥ 0 ∀ y

⇔ (\(x\) - 3)2 + (2y - 1)2= 0

⇔ \(\left\{{}\begin{matrix}x-3=0\\3y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{3}\end{matrix}\right.\)

(4\(x-3\))4 + (y + 2)2 ≤ 0

(4\(x\) - 3)4 ≥ 0 ∀ \(x\)

(y + 2)2 ≥ 0 ∀ y

⇔(4\(x\) - 3)4   + (y+2)2 ≥ 0

⇔ (4\(x\) - 3)4 + (y + 2)2 ≤ 0 ⇔

\(\left\{{}\begin{matrix}4x-3=0\\y+2=0\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-2\end{matrix}\right.\)

 

 

 

23 tháng 11 2021

\(a,\Rightarrow\left[{}\begin{matrix}5x+1=\dfrac{6}{7}\\5x+1=-\dfrac{6}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}5x=\dfrac{1}{7}\\5x=-\dfrac{13}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{35}\\x=-\dfrac{13}{35}\end{matrix}\right.\\ b,\Rightarrow\left(-\dfrac{1}{8}\right)^x=\dfrac{1}{64}=\left(-\dfrac{1}{8}\right)^2\Rightarrow x=2\\ c,\Rightarrow\left(x-2\right)\left(2x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{3}{2}\end{matrix}\right.\\ d,\Rightarrow\left(x+1\right)^{x+10}-\left(x+1\right)^{x+4}=0\\ \Rightarrow\left(x+1\right)^{x+4}\left[\left(x+1\right)^6-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\\left(x+1\right)^6=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x+1=1\\x+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=-2\end{matrix}\right.\\ e,\Rightarrow\dfrac{3}{4}\sqrt{x}=\dfrac{5}{6}\left(x\ge0\right)\\ \Rightarrow\sqrt{x}=\dfrac{10}{9}\Rightarrow x=\dfrac{100}{81}\)

Bài 1:...
Đọc tiếp

Bài 1: Tính

a. \(\left(1+\frac{1}{1\cdot3}\right)\cdot\left(1+\frac{1}{2\cdot4}\right)\cdot\left(1+\frac{1}{3\cdot5}\right)+\left(1+\frac{1}{4\cdot6}\right).....\left(1+\frac{1}{99\cdot101}\right)\)

b. \(\left[\sqrt{0,64}+\sqrt{0,0001}-\sqrt{\left(-0,5\right)^2}\right]\div\left[3\cdot\sqrt{\left(0,04\right)^2}-\sqrt{\left(-2\right)^4}\right]\)

c. \(\frac{5.4^{15}\cdot9^9-4.3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}-\frac{2^{19}\cdot6^{15}-7\cdot6^{10}\cdot2^{20}\cdot3^6}{9\cdot6^{19}\cdot2^9-4\cdot3^{17}\cdot2^{26}}+0,\left(6\right)\)

Bài 2: Tìm x, y, z biết :
a. \(\left(x-10\right)^{1+x}=\left(x-10\right)^{x+2009}\left(x\in Z\right)\)

b. \(\left|x-2007\right|+\left|x-2008\right|+\left|y-2009\right|+\left|x-2010\right|=3\left(x,y\in N\right)\) 

c. \(25-y^2=8\left(x-2009\right)^2\left(x,y\in Z\right)\)

d. \(2008\left(x-4\right)^2+2009\left|x^2-16\right|+\left(y+1\right)^2\le0\)

e. \(2x=3y\) ; \(4z=5x\) và \(3y^2-z^2=-33\)

Bài 3: Chứng minh rằng

a. \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2009^2}>\frac{1}{2009}\)

b. \(\left[75\cdot\left(4^{2008}+4^{2007}+4^{2006}+...+4+1\right)+25\right]⋮100\)

Bài 4: 

a. Tìm giá trị nhỏ nhất của biểu thức : \(M=\left(x^2+2\right)+\left|x+y-2009\right|+2005\)

b. So sánh: \(31^{11}\) và \(\left(-17\right)^{14}\)

c. So sánh: \(\left(\frac{9}{11}-0,81\right)^{2012}\) và \(\frac{1}{10^{4024}}\)

1

Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)

           \(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)

          \(=100.\frac{2}{101}=\frac{200}{101}\)