Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x, y > =0 theo BĐT Cô-si
\(x^6+y^9=\frac{1}{4}x^6+\frac{1}{4}x^6+\frac{1}{4}x^6+\frac{1}{4}x^6+\frac{1}{4}y^9+\frac{1}{4}y^9+\frac{1}{4}y^9+\frac{1}{4}y^9+16+16+16+16-64\)
\(\ge12\sqrt[12]{\left(\frac{1}{4}x^6\right)^4.\left(\frac{1}{4}y^9\right)^4.16^4}-64=12\sqrt[12]{x^{24}y^{36}}-64=12x^2y^3-64\)
\(\Rightarrow\frac{x^6+y^9}{4}\ge\frac{12x^2y^3-64}{4}=3x^2y^3-16\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\frac{1}{4}x^6=\frac{1}{4}y^9=16\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=2\\y=\sqrt[9]{64}\end{cases}}\)
\(\Leftrightarrow3b^2+6a^2\ge b^2+4ab+4a^2\)
\(\Leftrightarrow2b^2-4ab+2a^2\ge0\)
\(\Leftrightarrow2\left(b^2-2ab+a^2\right)\ge0\)
\(\Leftrightarrow2\left(b-a\right)^2\ge0\) ?(luôn đúng)
dấu''='' xảy ra khi và chỉ khi a=b
Áp dụng BĐT Bunhiacopxki cho bộ 2 số \(\left(1;\sqrt{2}\right)\)và \(\left(b;\sqrt{2}a\right)\)ta có:
\(\left(b+2a\right)^2\le\left(1+2\right)\left(b^2+2a^2\right)\)
\(\Leftrightarrow\)\(\left(b+2a\right)^2\le3\left(b^2+2a^2\right)\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b\)
p/s: mk không chắc
\(a,\sqrt{4x^4}+6x^2=2x^2+6x^2=8x^2\)
\(b,\sqrt{25a^4}-2a^2=5a^2-2a^2=3a^2\)
\(c,\sqrt{36a^4}+8a=6a^2+8a\)
\(d,\sqrt{\left(x-3\right)^4}-x^2+3x-1=\left(x-3\right)^2-x^2+3x-1=x^2-6x+9-x^2+3x-1=-3x+8\)
Bài 2. a/ \(1\le a,b,c\le3\) \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\), \(\left(c-1\right).\left(c-3\right)\le0\)
Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)
\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)
Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1
b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\)
Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)
Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay
\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)
Gỉa sử \(a^4+16\ge2a^3+8a\Leftrightarrow a^4-2a^3-8a+16\ge0\)
\(\Leftrightarrow a^3\left(a-2\right)-8\left(a-2\right)\ge0\Leftrightarrow\left(a-2\right)\left(a^3-8\right)\ge0\)
\(\Leftrightarrow\left(a-2\right)\left(a-2\right)\left(a^2+2a+4\right)\ge0\Leftrightarrow\left(a-2\right)^2\left(a^2+2a+4\right)\ge0\)
Ta thấy \(\left(a-2\right)^2\left(a^2+2a+4\right)\ge0\forall a\)nên giả sử là đúng
Vậy \(a^4+16\ge2a^3+8a\)