K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3

A = \(\frac{1}{50}\) + \(\frac{1}{51}\) + ... + \(\frac{1}{99}\)

Xét dãy số: 50; 51; 52;..;99

Dãy số trên là dãy số cách đều với khoảng cách là:

51 - 50 = 1

Số số hạng của dãy số trên là: (99 - 50) : 1 + 1 = 50 (số hạng)

Vậy A là tổng của 50 phân số.

\(\frac{1}{50}>\frac{1}{51}>\frac{1}{52}>\ldots>\frac{1}{99}\)

Suy ra: A= \(\frac{1}{50}\) + \(\frac{1}{51}\) + ...+ \(\frac{1}{99}\) > \(\frac{1}{99}\) + \(\frac{1}{99}\) + ... + \(\frac{1}{99}\)(50 phân số\(\frac{1}{99}\))

A = \(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+\cdots+\frac{1}{99}\) > \(\frac{1}{99}\) x 50

A = \(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+\cdots+\frac{1}{99}\) > \(\frac{50}{99}\) > \(\frac{50}{100}\) = \(\frac12\) (đpcm)


22 tháng 4 2019

\(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}>\frac{1}{2}\)

\(\Rightarrow\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)(50 phân số 1/100)

\(\Rightarrow\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}>\frac{50}{100}=\frac{1}{2}\left(đpcm\right)\)

22 tháng 4 2019

\(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{98}+\frac{1}{99}>\frac{1}{2}\)

\(\Rightarrow\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)(50 cái như z)

\(\Rightarrow\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}>\frac{50}{100}=\frac{1}{2}\left(đpcm\right)\)

26 tháng 2 2019

Ta có: \(\frac{1}{50}\)>\(\frac{1}{100}\)

\(\frac{1}{51}\)>\(\frac{1}{100}\)

\(\frac{1}{52}\)>\(\frac{1}{100}\)

..................

\(\frac{1}{99}\)>\(\frac{1}{100}\)

=>\(\frac{1}{50}\)+\(\frac{1}{51}\)+.............+\(\frac{1}{99}\)>\(\frac{1}{100}\).50=\(\frac{1}{2}\)(50 là số số hạng  của S nha)

=>S>\(\frac{1}{2}\)

11 tháng 3 2018

Ta ó: \(\frac{1}{50}>\frac{1}{100};\frac{1}{51}>\frac{1}{100};\frac{1}{52}>\frac{1}{100};....;\frac{1}{99}>\frac{1}{100}\)

\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\left(50so\right)=\frac{50}{100}=\frac{1}{2}\)

Vậy...

11 tháng 3 2018

Ta có :

Tất cả các số hạng của tổng đều lớn hơn \(\frac{1}{100}\), mà tổng có 50 số hạng

=> S > \(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)( có 50 số 1/100 )

=> S > \(\frac{50}{100}\)\(\frac{1}{2}\)

Vậy S > 1/2

22 tháng 4 2015

Tổng S có 50 phân số

=> S > 1/100 + 1/100 + 1/100 +...+ 1/100 (50 phân số) => S > 1/2.

Vậy S > 1/2

Tổng S có 50 phân số

=> S > 1/100 + 1/100 + 1/100 +...+ 1/100 (50 phân số) => S > 1/2.

Vậy S > 1/2

22 tháng 4 2015

\(S=\left(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{74}\right)+\left(\frac{1}{75}+\frac{1}{76}+...+\frac{1}{99}\right)\)

Có: \(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{74}>\frac{1}{75}+\frac{1}{75}+...+\frac{1}{75}=\frac{25}{75}=\frac{1}{3}\)

\(\frac{1}{75}+\frac{1}{76}+...+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{25}{100}=\frac{1}{4}\)

=> \(S>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)=> đpcm

14 tháng 3

Hog bít lèm

26 tháng 4 2018

ta có 1/51>1/100

        1/52>1/100

        ..................

        1/100=1/100

\(\Rightarrow\)S=1/51+1/52+...+1/100>(1/100+1/100+...+1/100)=1/100.50=1/2

\(\Rightarrow\)S>\(\frac{1}{2}\)

cái chỗ 1/100+1/100+...+1/100 có 50 số bạn nhá

chúc bạn học tốt~

Bài này thầy Chung dạy rồi mà

6 tháng 4 2019

\(S=\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)(có 50 số hạng)\(=\frac{50}{100}=\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\) .

6 tháng 4 2019

Có: \(\frac{1}{50}>\frac{1}{100}\\ \frac{1}{51}>\frac{1}{100}\\ \frac{1}{52}>\frac{1}{100}\\ .\\ .\\ .\\ \frac{1}{98}>\frac{1}{100}\\ \frac{1}{99}>\frac{1}{100}\)

\(\Rightarrow\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\)(có 50 số hạng \(\frac{1}{100}\))

\(\Rightarrow S>\frac{1}{100}\cdot50\)

\(\Rightarrow S>\frac{50}{100}\)

\(\Rightarrow S>\frac{1}{2}\left(đpcm\right)\)

10 tháng 5 2018

Ta có: 
1/50 + 1/99 = 149/50.99 
1/51 +1/98 = 149/51.98 
... 
1/74 +1/75=149/74.75 

=> a/b =149*[1/50.99 +..+1/74.75] 

Quy đồng mẫu số vế phải ta được; 
a/b =149.k /[50.51.....99] 

Tuy nhiên do 149 là số nguyên tố nên 50.51..99 không chia hết cho 149 

=> a= 149p, với p là số đã ước lược với các số dưới mẫu số 

=> a chia hết cho 149

16 tháng 6 2019

\(Ta\)\(có:\)

\(\frac{1}{50}\)\(+\)\(\frac{1}{99}\)\(=\frac{149}{50.99}\)

\(\frac{1}{51}+\frac{1}{98}=\frac{149}{51.98}\)

\(...\)

\(\frac{1}{74}+\frac{1}{75}=\frac{149}{74.75}\)

\(\Rightarrow\frac{a}{b}=149\)*\([\frac{1}{50.99}+...+\frac{1}{74.75}]\)

Quy đồng mẫu số vế phải ta được :

\(\frac{a}{b}=149.k/\left[50.51...99\right]\)

Tuy nhiên do 149 là số nguyên tố nên 50.51...99 ko chia hết cho 149

\(\Rightarrow a=149p,với\)\(p\)là số đã ước lược với các số dưới mẫu số

\(\Rightarrow a\)chia hết cho \(149\)