\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}⋮6\left(\forall n\in Z\right)\)   theo phương pháp...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2017

\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)

\(=3^{n+1}.10+2^{n+2}.3=3^n.3.5.2+2^{n+1}.2.3\)\(=\left(5.3^n+2^{n+1}\right).6⋮6\)

Vậy .............

8 tháng 12 2017

Ta có: 3n+3+3n+1+2n+3+2n+2=3n(33+3)+2n+1(22+2)=3n.30+2n+1.6=6.(3n.5+2n+1) => Chia hết cho 6 với mọi n

8 tháng 12 2017

Có ai đọc câu hỏi ko vậy? hay đọc mà thiếu chữ quy nạp :((

16 tháng 11 2017

Bài đầu đơn giản rồi , tự tính nhé <3

Bài 2

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n.3^2-2^n.2^2+3^n-2^n\)

\(=\left(3^n.3^2+1\right)-\left(2^n.2^2+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10.\left(3^n-2^{n-1}\right)⋮10\)

Vậy.....

30 tháng 11 2018

Ta có :

\(A=n^6-n^4+2n^3+2n^2\)

\(A=n^4\left(n^2-1\right)+2n^2\left(n+1\right)\)

\(A=n^4\left(n+1\right)\left(n-1\right)+2n^2\left(n+1\right)\)

\(A=n^2\left(n+1\right).\left[n^2\left(n-1\right)+2\right]\)

\(A=n^2\left(n+1\right).\left(n^3-n^2+2\right)\)

\(A=n^2\left(n+1\right).\left(n^3+1+1-n^2\right)\)

\(A=n^2\left(n+1\right).\left(n+1\right).\left(n^2-n+1-n+1\right)\)

\(A=n^2\left(n+1\right)^2.\left(n^2-2n+2\right)\)

Với \(n\in N\), n > 1 thì \(n^2-2n+2=\left(n-1\right)^2+1>\left(n-1\right)^2\)

\(n^2-2n+2=n^2-2\left(n-1\right)< n^2\)

\(\Rightarrow\left(n-1\right)^2< n^2-2n+n< n^2\)

Vậy A không phải số chính phương

11 tháng 7 2020

a) \(A=x\cdot\left(-1\right)^n\cdot\left|x\right|\)

\(A=x\cdot\left(-1\right)\cdot x\)

\(A=-x^2\)

b) \(\frac{x}{y}-\frac{2}{3}=\frac{y}{z}-\frac{4}{5}=\frac{z}{t}-\frac{6}{7}=0\)và \(x+y+z+t=315\)

Xét :

\(\frac{x}{y}-\frac{2}{3}=0\Leftrightarrow\frac{x}{y}=\frac{2}{3}\Leftrightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{z}-\frac{4}{5}=0\Leftrightarrow\frac{y}{z}=\frac{4}{5}\Leftrightarrow\frac{y}{4}=\frac{z}{5}\Leftrightarrow\frac{y}{12}=\frac{z}{15}\)

\(\frac{z}{t}-\frac{6}{7}=0\Leftrightarrow\frac{z}{t}=\frac{6}{7}\Leftrightarrow\frac{z}{6}=\frac{t}{7}\Leftrightarrow\frac{z}{15}=\frac{t}{\frac{35}{2}}\)

\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{t}{\frac{35}{2}}\) và \(x+y+z+t=315\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{t}{\frac{35}{2}}=\frac{x+y+z+t}{8+12+15+\frac{35}{2}}=\frac{315}{\frac{105}{2}}=6\)

\(\frac{x}{8}=6\Leftrightarrow x=48\)

\(\frac{y}{12}=6\Leftrightarrow y=72\)

\(\frac{z}{15}=6\Leftrightarrow z=90\)

\(\frac{t}{\frac{35}{2}}=6\Leftrightarrow t=105\)

11 tháng 7 2020

ta có

 \(\frac{x}{y}-\frac{2}{3}=0\Leftrightarrow\frac{x}{y}=\frac{2}{3}\Leftrightarrow\frac{x}{2}=\frac{y}{3}\)

\(\frac{y}{z}-\frac{4}{5}=0\Leftrightarrow\frac{y}{z}=\frac{4}{5}\Leftrightarrow\frac{y}{4}=\frac{z}{5}\)

\(\frac{z}{t}-\frac{6}{7}=0\Leftrightarrow\frac{z}{t}=\frac{6}{7}\Leftrightarrow\frac{z}{7}=\frac{t}{6}\)

ta lại có

\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{4}=\frac{z}{5}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{15}\end{cases}}}\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\left(1\right)\)

\(\hept{\begin{cases}\frac{y}{12}=\frac{z}{15}\\\frac{z}{7}=\frac{t}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{y}{84}=\frac{z}{105}\\\frac{z}{105}=\frac{t}{90}\end{cases}}}\Leftrightarrow\frac{y}{84}=\frac{z}{105}=\frac{t}{90}\left(2\right)\)

ta kết hợp (1) và (2) 

\(\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\\\frac{y}{84}=\frac{z}{105}=\frac{t}{90}\end{cases}}\Leftrightarrow\frac{x}{57}=\frac{y}{84}=\frac{z}{105}=\frac{t}{90}\)và \(x+y+z+t=315\)

theo tính chất dãy tỉ số = nhau

có \(\frac{x}{57}=\frac{y}{84}=\frac{z}{105}=\frac{t}{90}=\frac{x+y+z+t}{57+84+105+90}=\frac{315}{336}=\frac{15}{16}\)

thay vào

22 tháng 3 2017

n sẽ bằng 2

15 tháng 8 2017

1. D= 1/3 + 1/3.4 + 1/3.4.5 + 1/3.4.5....n < 1/2 + 1/3.4 + 1/4.5 + ...+ 1/ n.(n-1)

=> còn lại thì bạn có thể tự chứng minh

16 tháng 8 2017

mk chả hiểu j

30 tháng 3 2018

Ta có :\(n^3-13n\)

\(=\left(n^3-n\right)-12n\)

\(=n\left(n^2-1\right)-6\left(2n\right)\)

\(=\left(n-1\right)n\left(n+1\right)-6\left(2n\right)\)

Vì (n-1);n;n+1 là ba số tự nhiên liên tiếp =>(n-1)n(n+1)\(⋮\)2 và 3;

=>(n-1)n(n+1)\(⋮\)6

Mà 6(2n)\(⋮\)6

=>(n-1)n(n+1)-6(2n)\(⋮6\)

\(\Rightarrow n^3-13n⋮6\)

26 tháng 8 2018

Ta có: \(\left(2n-1\right)^3-2n+1=\left(2n-1\right)^3-\left(2n-1\right)\)

\(=\left(2n-1\right)\left(4n^2-4n+1-1\right)\)

\(=4n\left(n-1\right)\left(2n-1\right)\)

Ta có: \(4⋮4\Rightarrow4n\left(n-1\right)\left(2n-1\right)⋮4\) (1)

Mà \(n\left(n-1\right)\) là 2 số tự nhiên liên tiếp nên chia hết cho 2

\(\Rightarrow4n\left(n-1\right)\left(2n-1\right)⋮2\) (1)

Từ (1) và (2):

\(\Rightarrow4n\left(n-1\right)\left(2n-1\right)⋮8\)

Hay: \(A⋮8\)

=.= hok tốt!!