Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;4;2;-2;-1;-4\right\}\)
\(\Leftrightarrow3n\in\left\{0;3;-3\right\}\)
hay \(n\in\left\{0;1;-1\right\}\)
1) Đặt A = n^5 - n = n(n^4 - 1) = n(n^2 - 1)(n^2 + 1) = n(n - 1)(n + 1)(n^2 + 1)
Nếu n chia hết cho 5 ta dễ thấy đpcm
Nếu n : 5 dư 1 => n = 5k + 1
=> A = n.(5k + 1 - 1)(n + 1)(n^2 + 1) = n.5k.(n + 1)(n^2 + 1) chia hết cho 5
Nếu n : 5 dư 2 => n = 5k + 2
=> A = n(n - 1)(n + 1)[(5k + 2)^2 + 1] = n(n - 1)(n + 1)(25k^2 + 20k + 5)
= 5n(n - 1)(n + 1)(5k^2 + 4k + 1) chia hết cho 5
Nếu n : 5 dư 3 => n = 5k + 3
=>A = n(n - 1)(n + 1)(25k^2 + 30k + 10) = 5n(n - 1)(n + 1)(5k^2 + 6k + 2) chia hết cho 5
Nếu n : 5 dư 4 => n = 5k + 4
=> A = n(n - 1)(5k + 5)(n^2 + 1) = 5n(n - 1)(k + 1)(n^2 + 1) chia hết cho 5
Vậy trong tất cả trường hợp n^5 - n luôn chia hết cho 6
2) Đặt B = n^3 - 13n = n^3 - n -12n = n(n - 1)(n + 1) - 12n
Ta có : Trong 3 số nguyên liên tiếp tồn tại ít nhất 1 số chẵn và tồn tại ít nhất một số chia hết cho 3 nên tích của 3 số đó chia hết cho 2 và chia hết cho 3 mà (2;3) = 1 nên tích 3 số nguyên liên tiếp chia hết cho 6
=> n(n - 1)(n + 1) chia hết cho 6 mà 12n chia hết cho 6
=> n^3 - n chia hết cho 6
3) n^3 + 23n = n^3 - n + 24n = n(n - 1)(n + 1) + 24n
Tương tự câu 2 : n(n - 1)(n + 1) và 24n chia hết cho 6
=> n^3 + 23n chia hết cho 6
4)Đặt A = n(n + 1)(2n + 1) = n(n + 1)[2(n - 1) + 3]
= 2n(n + 1)(n - 1) + 3n(n + 1)
n(n + 1) là tích 2 số nguyên liên tiếp nên chia hết cho 2
2n(n + 1)(n - 1) chia hết cho 2
=> A chia hết cho 2
n(n + 1)(n - 1) là tích 3 số nguyên liên tiếp nên chia hết cho 3
3n(n + 1) chia hết cho 3
=> A chia hết cho 3
Mà (2 ; 3) = 1 (nguyên tố cùng nhau)
=> A chia hết cho 6
5) Đặt A = 3n^4 - 14n^3 + 21n^2 - 10n
Chứng minh bằng quy nạp
Với n =1 => A = 0 chia hết cho 24
Giả sử A chia hết 24 đúng với n = k
Nghĩa là :A(k) = 3k^4 - 14k^3 + 21k^2 - 10k chia hết cho 24
Ta phải chứng minh :
A chia hết cho 24 đúng với n = k + 1
Nghĩa là :
A(k + 1) = 3(k + 1)^4 - 14(k + 1)^3 + 21(k + 1)^2 - 10(k + 1)
Khai triển ta được :
A = (3k^4 - 14k^3 + 21k^2 - 10k) + (12k^3 - 24k^2 + 12k)
Ta phải chứng minh : 12k^3 - 24k^2 + 12k chia hết 24
12k^3 - 24k^2 + 12k = 12k(k^2 - 2k + 1)
= 12k(k - 1)^2 = 12k(k - 1)(k - 1)
12 chia hết 12
k(k - 1) là tích 2 số nguyên liên tiếp nên chia hết cho 2
=> 12k^3 - 24k^2 - 2k + 1 chia hết cho 24
Mà 3k^4 - 14k^3 + 21k^2 - 10k chia hết cho 24 (giả thiết quy nạp)
=> A(k + 1) chia hết 24
Theo nguyên lý quy nạp => A chia hết cho 24 (đpcm)
6) n = 2k + 1 với k thuộc Z
A = n^2 + 4n + 3 = (2k + 1)^2 + 4(2k + 1) + 3
= 4k^2 + 12k + 8
= 4(k^2 + 3k + 2)
= 4(k + 2k + k + 2)
= 4(k + 1)(k + 2)
4 chia hết cho 4
(k +1)(k + 2) là tích 2 số nguyên liên tiếp nên chia hết cho 2
=> n^2 + 4n + 3 chia hết cho 4.2 = 8 với n lẻ
7) n = 2k + 1
Đặt A = n^3 + 3n^2 - n - 3
= (2k + 1)^3 + 3(2k + 1)^2 - (2k + 1) - 3
= 8k^3 + 24k^2 + 16k
= 8k(k^2 + 3k + 2)
= 8k(k^2 + k + 2k + 2)
= 8k(k + 1)(k + 2)
8 chia hết cho 8
k(k + 1)(k + 2) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3 => chia hết cho 6
=> A chia hết cho 8.6 = 48 với n lẻ
a: \(\Leftrightarrow n^3-2n^2+2n^2-4n+3n-6+6⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
b: \(\Leftrightarrow n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
\(\Leftrightarrow n^2+n+1\in\left\{1;3\right\}\)
\(\Leftrightarrow\left[{}\begin{matrix}n\left(n+1\right)=0\\n^2+n-2=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)
\(x^{3m+1}+x^{3n+2}+1\\ =x^{3m+1}+x^{3n+2}+1-x-x^2+x+x^2\\ =\left(x^{3m+1}-x\right)+\left(x^{3n+2}-x^2\right)+\left(x^2+x+1\right)\\ =x\left(x^{3m}-1\right)+x^2\left(x^{3n}-1\right)+\left(x^2+x+1\right)\\ =\left(x^{3m}-1\right)\left(x+x^2\right)+\left(x^2+x+1\right)\\ =\left[\left(x^3\right)^m-1\right]\left(x+x^2\right)+\left(x^2+x+1\right)\\ =\left(x^3-1\right)S\left(x+x^2\right)+\left(x^2+x+1\right)\\ =S\left(x-1\right)\left(x^2+x+1\right)\left(x+x^2\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left[S\left(x-1\right)\left(x+x^2\right)+1\right]⋮\left(x^2+x+1\right)\forall m;n\)
phần a sai đề nha bạn
b,Ta có
\(2\equiv2\left(mod13\right)\)
\(\Rightarrow2^{12}\equiv1\left(mod13\right)\)
\(\Rightarrow2^{12.5}.2^{10}\equiv1.2^{10}\left(mod13\right)\)
\(\Rightarrow2^{60}.2^{10}\equiv1024\left(mod13\right)\)
\(\Rightarrow2^{70}\equiv10\left(mod13\right)\)\(\left(1\right)\)
Lại có:
\(3\equiv3\left(mod13\right)\)
\(\Rightarrow3^6\equiv1\left(mod13\right)\)
\(\Rightarrow3^{6.11}.3^4\equiv1.3^4\left(mod13\right)\)
\(\Rightarrow3^{66}.3^4\equiv81\left(mod13\right)\)
\(\Rightarrow3^{70}\equiv3\left(mod13\right)\)\(\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow2^{70}+3^{70}\equiv13\equiv0\left(mod13\right)\)
c, Ta có
\(17\equiv-1\left(mod18\right)\)
\(\Rightarrow17^{19}\equiv-1\left(mod18\right)\)\(\left(1\right)\)
Lại có
\(19\equiv1\left(mod18\right)\)
\(\Rightarrow19^{17}\equiv1\left(mod18\right)\)\(\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow17^{19}+19^{17}\equiv0\left(mod18\right)\)
\(\Rightarrow17^{19}+19^{17}⋮18\)
33n+2= 33n.32= 27n.9=243n chia 19 dư 15
5.23n+1=5.23n.21 = 5.8n.2= 80n chia 19 dư 4
=> 33n+2 + 5.23n+1 chia hết cho 19( 1 cái dư 15, cài kia dư 4 cộng lại = 19 chia hết cho 19)
học tốt man :)