Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ax-ay-bx+by+(y-x)2
= a(x-y)-b(x-y)-(x-y)2
= (a-b-1)(x-y)
chả bít dúng hay sai ,hình như là đúng
ko có đáp án nhé . mk nói thật luôn . nếu sai bạn đừng k nhé !
a) \(100x^2-\left(x^2+25\right)^2\)
\(=\left(10x\right)^2-\left(x^2+25\right)^2\)
\(=\left(10x+x^2+25\right)\left(10x-x^2-25\right)\)
\(=\left(x+5\right)^2\left(10x-x^2-25\right)\)
b) \(1+\left(x-y+5\right)^2-2\left(x-y+5\right)\)
\(=\left[\left(x-y+5\right)-1\right]^2\)
\(=\left(x-y+4\right)^2\)
c) \(\left(x^2+4y^2-5\right)^2-16\left(x^2y^2+2xy+1\right)\)
\(=\left(x^2+4y^2-5\right)^2-4^2\left(xy+1\right)^2\)
\(=\left[\left(x^2+4y^2-5\right)-4\left(xy+1\right)\right]\left[\left(x^2+4y^2-5\right)+4\left(xy+1\right)\right]\)
\(=\left(x^2+4y^2-5-4xy-4\right)\left(x^2+4y^2-5+4xy+4\right)\)
\(=\left(x^2-4xy+4y^2-9\right)\left(x^2+4xy+4y^2-1\right)\)
\(=\left[\left(x-2y\right)^2-3^2\right]\left[\left(x+2y\right)^2-1^2\right]\)
\(=\left(x-2y-3\right)\left(x-2y+3\right)\left(x+2y-1\right)\left(x+2y+1\right)\)
d) \(\left(x^2+8x-34\right)^2-\left(3x^2-8x-2\right)^2\)
\(=\left[\left(x^2+8x-34\right)-\left(3x^2-8x-2\right)\right]\left[\left(x^2+8x-34\right)+\left(3x^2-8x-2\right)\right]\)
\(=\left(x^2+8x-34-3x^2+8x+2\right)\left(x^2+8x-34+3x^2-8x-2\right)\)
\(=\left(-2x^2+16x-32\right)\left(4x^2-36\right)\)
\(=-2\left(x^2-8x+16\right)\left[\left(2x\right)^2-6^2\right]\)
\(=-2\left(x-4\right)^2\left(2x-6\right)\left(2x+6\right)\)
\(=-2\left(x-4\right)^24\left(x-3\right)\left(x+3\right)\)
\(=8\left(x-4\right)^2\left(x-3\right)\left(x+3\right)\)
a.100x2-(x2+25)2=(10x)2-(x2+25)2=(10x-x2-25)(10x+x2+25)=(10x-x2-25)(x+5)2
b.1+(x-y+5)2-2(x-y+5)=(x-y+4)2
\(a,100x^2-\left(x^2+25\right)\)
\(=\left(10x-x^2+25\right)\left(10x+x^2+25\right)\)
\(b,1+\left(x-y+5\right)^2-2\left(x-y+5\right)^2\)
\(=\left(1-x+y-5\right)^2\)
A C B D I H K 3 4 7
a) Ta có : Tam giác ABC vuông ở B
=> AB2 + BC2 = AC2
=> 32 + 42 = AC2
=> AC2 = 25
=> AC = 5 (cm)
Vì BI là tia phân giác góc B
=> \(\frac{AI}{IC}=\frac{AB}{BC}\)
=> \(\frac{AI+IC}{IC}=\frac{AB+BC}{BC}\)
=> \(\frac{AC}{IC}=\frac{AB+BC}{BC}\)
=> \(IC=\frac{AC.BC}{AB+BC}=\frac{5.4}{3+4}=\frac{20}{7}\left(cm\right)\)
b) Xét tam giác ABC và tam giác HBC có
\(\hept{\begin{cases}\widehat{ACB}\text{ chung }\\\widehat{CHB}=\widehat{CBA}=90^{\text{o}}\end{cases}}\)
=> \(\Delta BAC\approx\Delta HBC\left(g-g\right)\)(1)
c) Xét tam giác CBK và tam giác CDB có :
\(\hept{\begin{cases}\text{\widehat{D} Chung }\\\widehat{BKD}=\widehat{CBD}\left(=90^{\text{o}}\right)\end{cases}}\)\(\hept{\begin{cases}\widehat{C}\text{ chung }\\\widehat{CBD}=\widehat{BKC}\left(=90^{\text{o}}\right)\end{cases}}\)
=> \(\Delta CBK\approx\Delta CDB\left(g-g\right)\)
=> \(\frac{BC}{CD}=\frac{BK}{BD}=\frac{CK}{BC}\)
=> \(\frac{BC}{CD}=\frac{CK}{BC}\Rightarrow BC^2=CK.CD\)
(4x - 1)2
\(16x^2-8x+1\\ =\left(16x^2-4x\right)-\left(4x-1\right)\\ =4x\left(4x-1\right)-\left(4x-1\right)\\ =\left(4x-1\right)^2\)