Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B A C 3 4 I H
a, Áp dụng định lí Pytago cho tam giác ABC vuông tại B ta có :
\(AC^2=AB^2+BC^2=9+16=25\Rightarrow AC=5\)cm
b, Vi BI là đường phân giác ^B nên
\(\frac{AB}{BC}=\frac{AI}{IC}\)( tính chất )
mà \(AI=AC-IC=5-IC\)
\(\Rightarrow\frac{3}{4}=\frac{5-IC}{IC}\Rightarrow IC=\frac{20}{7}\)cm
b, Xét tam giác BAC và tam giác HBC ta có :
^ABC = ^BHC = 900
^C _ chung
Vậy tam giác BAC ~ tam giác HBC ( g.g )
ΔABC vuông tại B
=>\(BA^2+BC^2=AC^2\)
=>\(BC^2=10^2-6^2=64\)
=>\(BC=\sqrt{64}=8\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{6}=\dfrac{CD}{10}\)
=>\(\dfrac{BD}{3}=\dfrac{CD}{5}\)
mà BD+CD=BC=8cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{5}=\dfrac{BD+CD}{3+5}=\dfrac{8}{8}=1\)
=>\(BD=3\cdot1=3\left(cm\right);CD=5\cdot1=5\left(cm\right)\)
a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)
b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có
\(\widehat{EBF}=\widehat{EDC}\)
Do đó: ΔEBF\(\sim\)ΔEDC
d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: BA=BE và DA=DE
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
DO đó: ΔADF=ΔEDC
Suy ra: AF=EC
=>BF=BC
=>ΔBFC cân tại B
mà BD là đường phân giác
nên BD la đường cao
A) Xét \(\Delta_VABH\) và \(\Delta_vCBA\):
\(\widehat{B}\): chung
\(\Rightarrow\Delta_vABH\sim\Delta_vCBA\left(gn\right)\)
B) Đề sai vì BC\(=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(\Rightarrow BE=10-4=6\left(cm\right)\)
\(AH=\frac{6.8}{10}=4,8\left(cm\right)\)
mà \(AH^2=BH.HC\) nên AH=BE
Vậy đề sai.
C) Có: \(BH=\frac{AB^2}{BC}=\frac{6^2}{10}=3,6\left(cm\right)\)
\(S_{ABH}=\frac{1}{2},3,6.4,8=8,64\left(cm^2\right)\)
A C B D I H K 3 4 7
a) Ta có : Tam giác ABC vuông ở B
=> AB2 + BC2 = AC2
=> 32 + 42 = AC2
=> AC2 = 25
=> AC = 5 (cm)
Vì BI là tia phân giác góc B
=> \(\frac{AI}{IC}=\frac{AB}{BC}\)
=> \(\frac{AI+IC}{IC}=\frac{AB+BC}{BC}\)
=> \(\frac{AC}{IC}=\frac{AB+BC}{BC}\)
=> \(IC=\frac{AC.BC}{AB+BC}=\frac{5.4}{3+4}=\frac{20}{7}\left(cm\right)\)
b) Xét tam giác ABC và tam giác HBC có
\(\hept{\begin{cases}\widehat{ACB}\text{ chung }\\\widehat{CHB}=\widehat{CBA}=90^{\text{o}}\end{cases}}\)
=> \(\Delta BAC\approx\Delta HBC\left(g-g\right)\)(1)
c) Xét tam giác CBK và tam giác CDB có :
\(\hept{\begin{cases}\text{\widehat{D} Chung }\\\widehat{BKD}=\widehat{CBD}\left(=90^{\text{o}}\right)\end{cases}}\)\(\hept{\begin{cases}\widehat{C}\text{ chung }\\\widehat{CBD}=\widehat{BKC}\left(=90^{\text{o}}\right)\end{cases}}\)
=> \(\Delta CBK\approx\Delta CDB\left(g-g\right)\)
=> \(\frac{BC}{CD}=\frac{BK}{BD}=\frac{CK}{BC}\)
=> \(\frac{BC}{CD}=\frac{CK}{BC}\Rightarrow BC^2=CK.CD\)