Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D O N M P
+) Ta có: DP // AB => ^APD = ^BAP (2 góc so le trong). Mà ^BAP = ^NMB (Do MN // AP)
Nên ^APD = ^NMB => \(\Delta\)ADP ~ \(\Delta\)NBM (g.g) => \(\frac{AD}{NB}=\frac{DP}{BM}\)=> \(AD.BM=NB.DP\)
Hoặc \(AB.BM=NB.DP\)=> \(OB^2=NB.DP\)(Do \(AB.BM=\frac{AB^2}{2}=OB^2\)theo ĐL Pytago)
Hay \(OB.OD=NB.DP\)=> \(\frac{OB}{DP}=\frac{NB}{OD}\)
Xét \(\Delta\)BNO và \(\Delta\)DOP có: ^OBN = ^PDO (=450) \(\frac{OB}{PD}=\frac{NB}{OD}\)(cmt)
=> \(\Delta\)BNO ~ \(\Delta\)DOP (c.g.c) (đpcm).
+) \(\Delta\)BNO ~ \(\Delta\)DOP (cmt) => ^BON = ^DPO (1)
Trong \(\Delta\)ODP có: ^DOP + ^DPO = 1800 - ^ODP = 1350 (2)
Từ (1) và (2) suy ra ^DOP + ^BON = 1350 => ^NOP = 1800 - (^DOP + ^BON) = 450
Vậy ^NOP = 450.
M A B C I D N O H K
a) CM: \(\widehat{OBM}=\widehat{ODC}\)
\(\widehat{OBM}+\widehat{OBC}=180^o\)( kề bù)
\(\widehat{ODC}+\widehat{OBC}=180^o\)( tứ giác ODCB nội tiếp )
=> \(\widehat{OBM}=\widehat{ODC}\)
b)
+)Xét tam giác MCN có CO là tia phân giác đồng thời là đường cao
=> Tam giác CMN cân tại C (1)
=> \(\widehat{BMA}=\widehat{DNA}=\widehat{BAM}\)( CD//BA => DN//BA)
=> Tam giác BMA cân tại B
=> BM=BA=CD ( ABCD là hình bình hành) (2)
+) CO là phân giác \(\widehat{BCD}\)
=> \(\widebat{BO}=\widebat{DO}\)
=> BO=DO (3)
+) Xét tam giác BOM và tam giác DOC có:
\(\widehat{OBM}=\widehat{ODC}\)( theo a)
BM=CD ( theo 2)
BO=DO (theo 3)
=> \(\Delta BOM=\Delta DOC\)
+) OM=OC
Và từ (1) => CO là đường trung trực của MN
=> OM=ON
Vậy OM=ON=OC
=> O là tâm đường tròn ngoại tiếp tam giác CMN
c) GỌi H là giao của IO và BD
=> IH vuông BD và H là trung điể m BD
Ta có: \(KD^2=\left(HD-HK\right)^2=HD^2+HK^2-2.HD.HK=ID^2-IH^2+IK^2-IH^2-2HD\left(HD-KD\right)\)
\(=ID^2+IK^2-2\left(IH^2+HD^2\right)+2HD.KD=ID^2+IK^2-2ID^2+2HD.KD\)
\(=IK^2-ID^2+2HD.KD\)
=> \(IB^2-IK^2=ID^2-IK^2=2HD.KD-KD^2\)
=> \(\frac{IB^2-IK^2}{KD^2}=\frac{2HD-KD}{KD}=\frac{BD-KD}{KD}=\frac{BK}{KD}\)(4)
Ta lại có: CK là phân giác trong của tam giác CBD
=> \(\frac{BK}{KD}=\frac{CB}{CD}\)
Và MB=DC ( theo cm câu a) , CM=CN ( Tam giác CMN cân)
=> CB=DN
=> \(\frac{BK}{KD}=\frac{DN}{MB}\)(5)
Từ (4), (5)
=> ĐPCM
Đường tròn c: Đường tròn qua B_1 với tâm O Góc α: Góc giữa O, A, P Góc α: Góc giữa O, A, P Góc β: Góc giữa P, B, O Góc β: Góc giữa P, B, O Đoạn thẳng i: Đoạn thẳng [P, C] Đoạn thẳng k: Đoạn thẳng [B, P] Đoạn thẳng l: Đoạn thẳng [P, A] Đoạn thẳng m: Đoạn thẳng [B, C] Đoạn thẳng n: Đoạn thẳng [E, B] Đoạn thẳng p: Đoạn thẳng [O, B] Đoạn thẳng q: Đoạn thẳng [O, A] Đoạn thẳng r: Đoạn thẳng [D, A] Đoạn thẳng s: Đoạn thẳng [A, B] O = (5.16, 0.8) O = (5.16, 0.8) O = (5.16, 0.8) O = (5.16, 0.8) O = (5.16, 0.8) O = (5.16, 0.8) O = (5.16, 0.8) P = (0.16, 5.34) P = (0.16, 5.34) P = (0.16, 5.34) P = (0.16, 5.34) P = (0.16, 5.34) P = (0.16, 5.34) P = (0.16, 5.34) Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm C: Giao điểm đường của c, h Điểm C: Giao điểm đường của c, h Điểm C: Giao điểm đường của c, h Điểm C: Giao điểm đường của c, h Điểm C: Giao điểm đường của c, h Điểm C: Giao điểm đường của c, h Điểm C: Giao điểm đường của c, h Điểm D: Giao điểm đường của c, i Điểm D: Giao điểm đường của c, i Điểm D: Giao điểm đường của c, i Điểm D: Giao điểm đường của c, i Điểm D: Giao điểm đường của c, i Điểm D: Giao điểm đường của c, i Điểm D: Giao điểm đường của c, i Điểm E: Giao điểm đường của f, j Điểm E: Giao điểm đường của f, j Điểm E: Giao điểm đường của f, j Điểm E: Giao điểm đường của f, j Điểm E: Giao điểm đường của f, j Điểm E: Giao điểm đường của f, j Điểm E: Giao điểm đường của f, j
a) Do BC // AP nên \(\widehat{EPD}=\widehat{DCB}\) (Hai góc so le trong)
mà \(\widehat{DCB}=\widehat{EBP}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung BD)
nên \(\widehat{EPD}=\widehat{EPB}\)
Suy ra \(\Delta PED\sim\Delta BEP\left(g-g\right)\)
b) Ta thấy ngay \(\widehat{EAD}=\widehat{EBA}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung AD)
Suy ra \(\Delta AED\sim\Delta BEA\left(g-g\right)\)
c) Do \(\Delta PED\sim\Delta BEP\Rightarrow\frac{PE}{BE}=\frac{ED}{PE}\Rightarrow PE^2=ED.EB\)
\(\Delta AED\sim\Delta BEA\Rightarrow\frac{AE}{BE}=\frac{ED}{AE}\Rightarrow AE^2=BE.ED\)
Vậy nên AE = EP
a) Gọi K là giao của MN và CD
Ta có: \(\widehat{BMN}=\widehat{MTD}\)(so le trong và MN//AP) và \(\widehat{MTD}=\widehat{APD}\) (đồng vị và MN//AP)
\(\Rightarrow\widehat{BMN}=\widehat{APD}\)
Xét \(\Delta BMN\)và \(\Delta DPA\)có:
\(\hept{\begin{cases}\widehat{MBN}=\widehat{PDA}\left(=90^o\right)\\\widehat{BMN}=\widehat{APD}\left(cmt\right)\end{cases}}\)
=> \(\Delta BMN~\Delta DPA\left(g.g\right)\Rightarrow\frac{BM}{DP}=\frac{BN}{DA}\Rightarrow\frac{BM}{BN}=\frac{DP}{DA}\)
Mà \(BM=\frac{AB}{2},DA=BD\sin\widehat{ABD}=\frac{\sqrt{2}BD}{2}=\sqrt{2}OB\)
Do đó: \(\frac{\frac{\sqrt{2}OD}{2}}{BN}=\frac{DP}{\sqrt{2}OB}\Rightarrow\frac{OD}{BN}=\frac{DP}{OB}\)
Xét \(\Delta DOP\)và \(\Delta BNO\)có: \(\hept{\begin{cases}\widehat{ODP}=\widehat{NBO}\left(=45^o\right)\\\frac{OD}{BN}=\frac{DP}{OB}\end{cases}\Rightarrow\Delta DOP~\Delta BNO\left(c.g.c\right)\Rightarrow\widehat{DOP}=\widehat{BNO}}\)
Mà \(\widehat{DON}=\widehat{BNO}+\widehat{OBN}=\widehat{BNO}+45^o\)
Và \(\widehat{DON}=\widehat{DOP}+\widehat{NOP}\)
Do vậy \(\widehat{NOP}=45^o\)
2. Ta có \(\frac{OP}{ON}=\frac{OD}{BN}\left(\Delta DOP~\Delta BNO\right)\)
Nên \(\frac{OP}{ON}=\frac{OB}{BN}\Rightarrow\frac{OP}{OB}=\frac{ON}{BN}\)
Xét \(\Delta OPN\)và \(\Delta BQN\)có: \(\hept{\begin{cases}\widehat{PON}=\widehat{OBN}\left(=45^o\right)\\\frac{OP}{OB}=\frac{ON}{BN}\end{cases}\Rightarrow\Delta OPN~\Delta BON\left(c.g.c\right)\Rightarrow\widehat{OPN}=\widehat{BON}}\)
Gọi I là tâm đường tròn ngoại tiếp tam giác NOP
Ta có \(\widehat{ION}=\frac{180^o-\widehat{OIN}}{2}=90^o-\widehat{OPN}=\widehat{BOC}-\widehat{BON}=\widehat{CON}\)
=> 2 tia OI,OC trùng nhau
Vậy I thuộc OC