Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Qui tắc rút gọn một phân thức đại số.
- Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung.
- Chia cả tử và mẫu cho nhân tử chung đó.
Rút gọn:
Muốn rút gọn phân thức đại số ta có thể :
+ Phân tích tử và mẫu thành nhân tử ( nếu cần ) để tìm nhân tử chung.
+ Chia cả tử và mẫu cho nhân tử chung.
Rút gọn phân thức :
\(\dfrac{8x-4}{8x^3-1}\)\(=\dfrac{4\left(2x-1\right)}{2x^3-1}\)\(=\dfrac{4\left(2x-1\right)}{\left(2x-1\right)\left(2x^2+2x+1\right)}\)\(=\dfrac{4}{4x^2+2x+1}\)
*Quy tắc rút gọn một phân thức đại số là:
-Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung.
-Chia cả tử và mẫu cho nhân tử chung.
*Bài tập:
\(\dfrac{8x-4}{8x^3-1}=\dfrac{4\left(2x-1\right)}{\left(2x-1\right)\left(x^2+x+1\right)}=\dfrac{4}{x^2+x+1}\)
\(A=\frac{3x^2+5xy-2y^2}{3x^2-7xy+2y^2}=\frac{6xy-2y^2+3x^2-xy}{2y^2-6xy-xy+3x^2}\)
\(=\frac{2y\left(3x-y\right)+x\left(3x-y\right)}{2y\left(y-3x\right)-x\left(y-3x\right)}\)
\(=\frac{\left(3x-y\right)\left(2y+x\right)}{\left(y-3x\right)\left(2y-x\right)}=\frac{-1\left(3x-y\right)\left(2y+x\right)}{\left(y-3x\right)\left(-1\right)\left(2y-x\right)}\)
\(=\frac{\left(-3x+y\right)\left(2y+x\right)}{\left(y-3x\right)\left(-2y+x\right)}=\frac{\left(y-3x\right)\left(2y+x\right)}{\left(y-3x\right)\left(x-2y\right)}=\frac{2y+x}{x-2y}\)
\(\left(x-1\right)\left(x+2\right)+\left(x+1\right)x=x^2+2x-x-2+x^2+x=\left(x^2+x^2\right)+\left(2x-x+x\right)-2=2x^2+2x-2=2\left(x^2+x-1\right)\)
x=2009x=2009
⇒x−1=2008(1)⇒x−1=2008(1)
Thay (1) vào A ta được:
A=x^2009−2008x^2008−2008x^2007−...−2008x+1
A=x^2009−(x−1)x^2008−...−(x−1)x+1
A=x^2009−x^2009+x^2008−...−x^2−x+1
A=−x+1
A=−2009+1
A=−2008
\(x=2009\Leftrightarrow x-1=2008\\ \Leftrightarrow A=x^x-\left(x-1\right)x^{x-1}-\left(x-1\right)x^{x-2}-...-\left(x-1\right)x+1\\ \Leftrightarrow A=x^x-x^x+x^{x-1}-x^{x-1}+x^{x-2}-...-x^2-x+1\\ \Leftrightarrow A=1-x=1-2009=-2008\)