Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Xét hiệu: 6(x+7y) - 6x+11y = 6x+42y-6x+11y = 31y
Vì 6x+11y chia hết cho 31, 31y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Mà (6;31)=1 => x+7y chia hết cho 31
Bài 3:
a,n2+3n-13 chia hết cho n+3
=>n(n+3)-13 chia hết cho n+3
=>13 chia hết cho n+3
=>n+3 E Ư(13)={1;-1;13;-13}
=>n E {-2;-4;10;-16}
d,n2+3 chia hết cho n-1
=>n2-n+n-1+4 chia hết cho n-1
=>n(n-1)+(n-1)+4 chia hết cho n-1
=>4 chia hết cho n-1
=>n-1 E Ư(4)={1;-1;2;-2;4;-4}
=>n E {2;0;3;-1;5;-3}
Bài này giải được 1 tháng VIP đấy, vì đây là câu hỏi của Toán vui hằng tuần
= (3n+2 + 3n ) - (2n+2 + 2n) = 3n. (32 + 1) - 2n .(22 + 1) = 3n.10 - 2n .5 = 3n.10 - 2n-1.2 .5 = 10. (3n - 2n-1) chia hết cho 10
=> 3n+2 + 3n - 2n+2 + 2n chia hết cho 10 với mọi n
bài làm
= (3n+2 + 3n ) - (2n+2 + 2n)
= 3n. (32 + 1) - 2n .(22 + 1)
= 3n.10 - 2n .5
= 3n.10 - 2n-1.2 .5
= 10. (3n - 2n-1) chia hết cho 10
Vậy ..................
hok tốt
Có 3^n+2 - 2^n+2 + 3^n - 2^n
=3^2 * 3^n+3^n-(2^n*2^2+2^n)
=3^n(9+1)-2^n*(4+1)
=3^n*10-2^n*5
Vì 3^n*10 chia hết cho 10; 2^n là số chẵn nên 2^n *5 có tận cùng là 0 nên chia hết cho 10.
Mà hiệu của 2 số chia hết cho 10 là 1 số chia hết cho 10
nên 3^n+2-2^n+2+3^n - 2^n chia hết cho 10
Câu 1 : Giải
* Nếu n chia 5 dư 1 thì n2 chia 5 dư 1
\(\Rightarrow\left(n^2+4\right)⋮5\)
* Nếu n chia 5 dư 4 thì n2 chia 5 dư 4
\(\Rightarrow\left(n^2+1\right)⋮5\)
\(\Rightarrow\left(n^2+1\right)\left(n^2+4\right)⋮5\)
Từ đó suy ra \(n\left(n^2+1\right)\left(n^2+4\right)⋮5\)( đpcm )
Câu 2 : Giải
Ta có : \(n^2+4n^2+5=5n^2+5=5\left(n^2+1\right)\)
\(\Rightarrow n^2+4n^2+5=\overline{...5}\)
\(\Rightarrow\)\(\Rightarrow n^2+4n^2+5\) không chia hết cho 8 ( đpcm )
Bài 2:
a) \(\left(n^2+3n-1\right)\left(n+2\right)-n^3-2\)
\(=n^3+3n^2-n+2n^2+6n-2-n^3-2\)
\(=5n^2+5n-4\)
Mà 5n2 + 5n chia hết cho 5 mà 4 không chia hết cho 5
=> \(5n^2+5n-4\) không chia hết cho 5
=> điều cần cm sai
Bài 2:
b) \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)
\(=n^2+3n-4-n^2+3n+4\)
\(=6n\) luôn chia hết cho 6 với mọi số nguyên n
=> đpcm
Bài 1:
a) Ta có: \(x=7\Rightarrow8=x+1\)
Thay vào ta được:
\(A=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...-\left(x+1\right)x^2+\left(x+1\right)x-5\)
\(A=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-...-x^3-x^2+x^2+x-5\)
\(A=x-5\)
\(A=7-5=2\)
Vậy khi x = 7 thì A = 2
Ta có :
\(n^2+n+2=n\left(n+1\right)+2\)
Vì tích 2 số tự nhiên liên tiếp chỉ có thể có tận cùng là 0 ; 2 ; 6
=> n(n+1)+2 chỉ có thể có tận cùng là 2 ; 4 ; 8
=> n ( n +1 ) + 2 không chia hết cho 5
=> n(n+1)+2 không chia hết cho 15
cảm ơn bạn nhé!