Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(a)\) Ta có :
\(3x=4y=6z\)
\(\Leftrightarrow\)\(\frac{3x}{12}=\frac{4y}{12}=\frac{6z}{12}\)
\(\Leftrightarrow\)\(\frac{x}{4}=\frac{y}{3}=\frac{z}{2}\)
\(\Leftrightarrow\)\(\frac{2x}{8}=\frac{y}{3}=\frac{5z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{8}=\frac{y}{3}=\frac{5z}{10}=\frac{2x-5z}{8-10}=\frac{-36}{-2}=18\)
Do đó :
\(\frac{x}{4}=18\)\(\Rightarrow\)\(x=18.4=72\)
\(\frac{y}{3}=18\)\(\Rightarrow\)\(y=18.3=54\)
\(\frac{z}{2}=18\)\(\Rightarrow\)\(z=18.2=36\)
Vậy \(x=72\)\(;\)\(y=54\) và \(z=36\)
Chúc bạn học tốt ~
2) Ta có: \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\frac{a}{b+c}=\frac{1}{2}\Rightarrow2a=b+c\)
\(\frac{b}{c+a}=\frac{1}{2}\Rightarrow2b=c+a\)
\(\frac{c}{a+b}=\frac{1}{2}\Rightarrow2c=a+b\)
Ta có: \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{b+a}{b}.\frac{c+b}{c}.\frac{a+c}{a}=\frac{2c.2a.2b}{b.c.a}=8\)
Vậy \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)
bạn thiếu đề đó mà kết quả là bằng nhau
Mà đây là lớp 4 đó
Ai tích mk mk tích lại cho
bđt \(\Leftrightarrow\)\(\left(ab+1\right)\left(bc+1\right)\left(ca+1\right)\ge\left(\frac{10}{3}\right)^3abc\) (*)
đặt \(\left(\sqrt{ab};\sqrt{bc};\sqrt{ca}\right)=\left(x;y;z\right)\)\(\Rightarrow\)\(xyz\le\frac{1}{27}\)
(*) \(\Leftrightarrow\)\(\left(x^2+1\right)\left(y^2+1\right)\left(z^2+1\right)\ge\left(\frac{10}{3}\right)^3xyz\)
\(VT\ge\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)\)
Có \(xy+1\ge10\sqrt[10]{\frac{xy}{9^9}}\)
Tương tự với \(yz+1\)\(;\)\(zx+1\)\(\Rightarrow\)\(VT\ge10^3\sqrt[10]{\frac{\left(xyz\right)^2}{9^{27}}}\)
Ta cần CM \(10^3\sqrt[10]{\frac{\left(xyz\right)^2}{9^{27}}}\ge\frac{10^3}{3^3}xyz\) đúng với \(xyz\le\frac{1}{27}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Đặt \(P=\left(a+\frac{1}{b}\right)\left(b+\frac{1}{c}\right)\left(c+\frac{1}{a}\right)\)
Vì a+b+c=1 nên
\(P=\left(a+\frac{1}{b}\right)\left(b+\frac{1}{c}\right)\left(c+\frac{1}{a}\right)=abc+\frac{1}{abc}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1\)
Từ BĐt Cosi cho 3 số dương ta có:
\(\frac{1}{3}=\frac{a+b+c}{3}\ge\sqrt[3]{abc}\Rightarrow abc\le\frac{1}{27}\)
đặt x=abc thì \(0< x\le\frac{1}{27}\)
do đó: \(x+\frac{1}{x}-27-\frac{1}{27}=\frac{\left(27-x\right)\left(1-27x\right)}{27x}\ge0\)
=> \(x+\frac{1}{x}=abc+\frac{1}{abc}\ge27+\frac{1}{27}=\frac{730}{27}\)
Mặt khác: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
Nên \(P\ge\frac{730}{27}+10=\frac{1000}{27}=\left(\frac{10}{3}\right)^3\)
Dấu "=" xảy ra khi a=b=c\(=\frac{1}{3}\)
\(a,\frac{4}{5}\times\frac{a}{b}=\frac{7}{10}\)
\(\frac{a}{b}=\frac{7}{10}:\frac{4}{5}\)
\(\frac{a}{b}=\frac{7}{10}\times\frac{5}{4}\)
\(\frac{a}{b}=\frac{7}{8}\)
\(b,\frac{1}{3}:\frac{a}{b}=\frac{2}{3}:\frac{4}{3}\)
\(\frac{1}{3}:\frac{a}{b}=\frac{2}{3}\times\frac{3}{4}\)
\(\frac{1}{3}:\frac{a}{b}=\frac{1}{2}\)
\(\frac{a}{b}=\frac{1}{3}:\frac{1}{2}\)
\(\frac{a}{b}=\frac{1}{3}\times2\)
\(\frac{a}{b}=2\)
\(c,\frac{a}{b}+\frac{3}{8}=\frac{5}{6}\)
\(\frac{a}{b}=\frac{5}{6}-\frac{3}{8}\)
\(\frac{a}{b}=\frac{11}{24}\)
\(\frac{a}{ac+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)
\(=\frac{a}{ac+a+abc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)
\(=\frac{bc+b+1}{bc+b+1}\)
\(=1\)
Ta có:
\(N=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{c}{ac+c+abc}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{1+ab+a}+\frac{c}{c\left(a+1+ab\right)}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{1+ab+a}+\frac{1}{a+1+ab}\)
\(=\frac{a+ab+1}{ab+a+1}=1\)
Vậy N = 1
a/b+c>a/a+b+c
b/c+a>b/a+b+c
c/a+b>c/a+b+c
===>a/b+c+b/c+a+c/a+b>a/a+b+c+b/a+b+c+c/a+b+c(1)
==>biểu thức này >1
ta có:
\(\frac{a}{a+b}=\frac{a\left(b+c\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\frac{b}{b+c}=\frac{b\left(a+b\right)\left(c+a\right)}{\left(b+c\right)\left(a+b\right)\left(c+a\right)}\)
\(\frac{c}{c+a}=\frac{c\left(b+c\right)\left(a+b\right)}{\left(c+a\right)\left(b+c\right)\left(a+b\right)}\)
=> \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}=\frac{a\left(b+c\right)\left(c+a\right)+b\left(a+b\right)\left(c+a\right)+c\left(b+c\right)\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
dễ thấy phần tử của phép tính trên lớn hơn mẫu => phép tính trên cho kết quả lớn hơn 1
Ta thấy : a/(a+b) > a/(a+b+c)
b/(b+c) > b/(a+b+c)
c/(c+a)>c/(a+b+c)
=> a/(a+b) + b/(b+c) + c/(c+a)> a/(a+b+c) +b/(a+b+c) +c/(a+b+c)=(a+b+c)/(a+b+c) = 1 (đpcm)