Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a) \(\frac{16}{24}-\frac{1}{3}=\frac{16}{24}-\frac{8}{24}=\)\(\frac{8}{24}=\frac{1}{3}\)
b) \(\frac{4}{5}-\frac{12}{60}=\frac{48}{60}-\frac{12}{60}=\frac{36}{60}=\frac{9}{15}\)
3.
a)\(\frac{17}{6}-\frac{2}{6}=\frac{17-2}{6}=\frac{15}{6}\)
b) \(\frac{16}{15}-\frac{11}{15}=\frac{16-11}{15}=\frac{5}{15}=\frac{1}{3}\)
c) \(\frac{19}{12}-\frac{13}{12}=\frac{19-13}{12}=\frac{6}{12}=\frac{1}{2}\)
a) 16 24 − 1 3 = 16 24 − 8 24 = 24 16 − 3 1 = 24 16 − 24 8 = 8 24 = 1 3 24 8 = 3 1 b) 4 5 − 12 60 = 48 60 − 12 60 = 36 60 = 9 15 5 4 − 60 12 = 60 48 − 60 12 = 60 36 = 15 9 3. a) 17 6 − 2 6 = 17 − 2 6 = 15 6 6 17 − 6 2 = 6 17−2 = 6 15 b) 16 15 − 11 15 = 16 − 11 15 = 5 15 = 1 3 15 16 − 15 11 = 15 16−11 = 15 5 = 3 1 c) 19 12 − 13 12 = 19 − 13 12 = 6 12 = 1 2 12 19 − 12 13 = 12 19−13 = 12 6 = 2 1
a)\(\frac{42}{15.7}\)= \(\frac{2.3.7}{3.5.7}\)= \(\frac{2}{5}\)
b) \(\frac{35.6}{336}\)= \(\frac{5.7.6}{6.7.8}\)= \(\frac{5}{8}\)
c) \(\frac{4.33}{11.12}\)= \(\frac{4.3.11}{11.3.4}\)= 1
d) \(\frac{9.4+9.11+5.9}{63}\)= \(\frac{9.\left(4+11+5\right)}{9.7}\)= \(\frac{20}{7}\)
#Hk tốt nhé
3636/4545+x=4848/1515
x=4848/1515-3636/4545
x=14544/4545-3636/4545
x=10908/4545
3535/5050-x=8/25
x=3535/5050-1616/5050
x=1919/5050
\(a,\frac{8}{15}+\frac{2}{3}=\frac{8+10}{15}=\frac{18}{15}=\frac{6}{5}\)
\(b,\frac{3}{7}+\frac{4}{8}=\frac{24+28}{56}=\frac{62}{56}=\frac{31}{28}\)
a) \(\frac{8}{15}+\frac{2}{3}=\frac{8}{15}+\frac{10}{15}=\frac{8+10}{15}=\frac{18}{15}=\frac{6}{5}\)
b) \(\frac{3}{7}+\frac{4}{8}=\frac{24}{56}+\frac{28}{56}=\frac{24+28}{56}=\frac{52}{56}=\frac{13}{14}\)
a) \(\frac{200620062006}{200520052005}=\frac{2006\times100010001}{2005\times100010001}=\frac{2006}{2005}\)
b) \(\frac{352352}{470470}=\frac{352\times1001}{470\times1001}=\frac{352}{470}=\frac{176}{235}\)
a, \(\frac{2006}{2005}\)
b, \(\frac{176}{235}\)
Mik đầu tiên đó , click cho mik nha !!!!!!!!!!!!!!!!!!!!!!
a) A = \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{30}\)
A > \(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\)
A > \(\frac{1}{30}.20\)
A > \(\frac{2}{3}\)
Vậy A > \(\frac{2}{3}\)
b) A = \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{30}\)
A < \(\frac{1}{11}+\frac{1}{11}+\frac{1}{11}+...+\frac{1}{11}\)
A < \(\frac{1}{11}.20\)
A < \(\frac{20}{11}\)
Mà \(\frac{20}{11}\)\(< 2\)
=> A < 2
Vậy A <2
ỦNG HỘ NHA
TL
A \(\frac{1}{4}+\frac{1}{7}=\frac{1\times7}{4\times7}+\frac{1\times4}{7\times4}=\frac{7}{24}+\frac{4}{28}=\frac{11}{28}\)
B\(\frac{1}{3}+\frac{1}{6}=\frac{1\times2}{3\times2}=\frac{2}{6}+\frac{1}{6}=\frac{3}{6}=\frac{1}{2}\)
C\(\frac{1}{4}+\frac{1}{5}=\frac{1\times5}{4\times5}+\frac{1\times4}{5\times4}=\frac{5}{20}+\frac{4}{20}=\frac{9}{20}\)
\(\frac{11}{28},\frac{1}{2},\frac{9}{20}\)MSC 140
\(\frac{11}{28}=\frac{11\times5}{28\times5}=\frac{55}{140}\)
\(\frac{1}{2}=\frac{1\times70}{2\times70}=\frac{70}{140}\)
\(\frac{9}{20}=\frac{9\times7}{20\times7}=\frac{63}{140}\)
\(\frac{55}{140}< \frac{63}{140}< \frac{70}{140}\)hoặc \(\frac{1}{4}+\frac{1}{7}< \frac{1}{4}+\frac{1}{5}< \frac{1}{3}+\frac{1}{6}\)
Vậy cho B
HT
Vì rút gọn phân số \(\frac{a}{b}\)thì được phân số \(\frac{3}{4}\)
=> 4a = 3b
Nếu cộng thêm 15 đơn vị vào tử số thì được phân số bằng \(\frac{7}{6}\)
=> \(\frac{a+15}{b}=\frac{7}{6}\)
=> 6. ( a + 15 ) = 7b
=> 6a + 90 = 7b
=> 2a + 4a + 90 = 7b
Mà 3b = 4a
=> 2a + 90 + 3b = 7b
=> 2a + 90 = 4b ( 1 )
Vì 6a + 90 = 7b
=> 6a + 90 = 3b + 3b + b
Mà 3b = 4a
=> 6a + 90 = 4a + 4a + b
=> 6a + 90 = 8a + b
=> 2a + b = 90 ( 2 )
Lấy ( 1 ) trừ đi ( 2 )
=> 2a + 90 - 2a - b = 4b - 90
=> 90 - b = 4b - 90
=> 5b = 180
=> b = 36
=> a = b x 3 : 4 = 27
Vậy phân số phải tìm là \(\frac{27}{36}\)
\(\frac{a}{ac+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)
\(=\frac{a}{ac+a+abc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)
\(=\frac{bc+b+1}{bc+b+1}\)
\(=1\)
Ta có:
\(N=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{c}{ac+c+abc}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{1+ab+a}+\frac{c}{c\left(a+1+ab\right)}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{1+ab+a}+\frac{1}{a+1+ab}\)
\(=\frac{a+ab+1}{ab+a+1}=1\)
Vậy N = 1