\(2^{2n+3}-29\)chia hết cho \(3\)

GIÚP M...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2016

Vô lý làm gì có chuyện đó nà chứng minh

28 tháng 8 2016

mk ko biết nếu biết mk đã giúp bn từ lâu rùi .Sory nha!

8 tháng 1 2018

a) 9.10n + 18 = 9(10n + 2) \(⋮\) 9

Mặt khác: 9(10n + 2) = 3.3(10n + 2)\(⋮\) 3

=> 9.10n + 18 \(⋮\) 9.3

=> 9.10n + 18 \(⋮\) 27.

b) 92n + 14 = 81n + 14.

Vì 81n có chữ số tận cùng là 1 nên 81n + 14 có chữ số tận cùng là 5.

=> 81n + 14 \(⋮\) 5

=> 92n + 14 \(⋮\) 5

c: \(1^3+7^3+3^3+5^3\)

\(=\left(1+7\right)\left(1^2-1\cdot7+7^2\right)+\left(3+5\right)\cdot\left(3^2-3\cdot5+5^2\right)\)

\(=8\cdot\left(1-7+49+9-15+25\right)⋮2^3\)(đpcm)

2 tháng 9 2016

2008 đồng dư với 1(mod 3)

\(\Rightarrow\)2008b2 đồng dư với 1(mod 3)

mà 2007b2 chia hết cho 3

\(\Rightarrow\)a+(2007b2+1)=a+2008b2

\(\Rightarrow\)a+1+2007b2 chia hết cho 3

vì a+1 chia hết cho 3(gt)

    2007b2 chia hết cho 3 (2007 chia hết cho 3)

\(\Rightarrow\)a+2008b2 chia hết cho 3

4 tháng 10 2019

a

\(5^5-5^4+5^3=5^3\left(5^2-5+1\right)=5^3\cdot21⋮7\)

b

\(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4\cdot55⋮11\)

4 tháng 10 2019

a)\(5^5-5^4+5^3\)

\(=5^3\left(5^2-5+1\right)\)

\(=5^3\times21⋮7\)

b) \(7^6+7^5-7^4\)

\(=7^4\left(7^2+7-1\right)\)

\(=7^4\times55⋮11\)

4 tháng 2 2019

ns chung méo có ai gáy, sủa cả :3

Ta có:

3^2n+1 +  2^n+2

=(9^n).3  +( 2^n) .4

=(9^n).3 + 3(2^n) + 7(2^n)

=3(9^n-2^n) + 7(2^n) ( các bước này khá giống Phạm Bá Hoàng nhưng ko nghĩa là tớ copy bài cậu ý =))

Mà: 9^n - 2^n chia hết cho 7 ( vì 2 số này cùng chia 7 dư 2 nên mũ mấy lên cx cùng số dư khi chia cho 7)

Cụ thể hơn để mấy bạn khỏi cãi: tớ viết dấu = thay cho 3 gạch ngang nhé :3

Vì: 2=2(mod 7);9=2(mod 7)

=> 2^n=2^n(mod 7); 9^n=2^n(mod 7)

=> 3(9^n-2^n) chia hết cho 7 và 7(2^n) chia hết cho 7

nên 3^2n+1 +  2^n+2 chia hết cho 7 (đpcm)

có lẽ ko sai nx đâu nhỉ nếu sai ib vs =))

19 tháng 2 2019

Bài này cx easy thôi.Dùng phép quy nạp là ra:

\(3^{2n+1}+2^{n+2}=9^n.3+2^n.4\)

+)Với n = 0 thì \(9^n.3+2^n.4=3+4=7\Rightarrow\)mệnh đề đúng với n = 0. (1)

Giả sử mệnh đề đúng với n = k.Tức là \(9^k.3+2^k.4⋮7\) (2)

Ta c/m nó đúng với n = k + 1.Tức là cần c/m \(9^{k+1}.3+2^{k+1}.4⋮7\) (3)

\(\Leftrightarrow9^k.27+2^k.8⋮7\).Thật vậy:

\(9^k.27+2^k.8=9\left(9^k.3+2^k.4\right)-2^k.28\)

Do \(9\left(9^k.3+2^k.4\right)⋮7;2^k.28⋮7\)

Suy ra \(9\left(9^k.3+2^k.4\right)-2^k.28⋮7\)

Suy ra (3) đúng .

Vậy theo nguyên lí qui nạp,ta có đpcm.

Bài 2: 

a: \(3B=3+3^2+3^3+...+3^{90}\)

\(\Leftrightarrow2B=3^{90}-1\)

hay \(B=\dfrac{3^{90}-1}{2}\)

b: \(B=\left(1+3+3^2+3^3+3^4+3^5\right)+3^6\left(1+3+3^2+3^3+3^4+3^5\right)+...+3^{84}\left(1+3+3^2+3^3+3^4+3^5\right)\)

\(=384\cdot\left(1+3^6+...+3^{84}\right)⋮52\)