K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NP
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HT
1
NN
Nguyễn Ngọc Anh Minh
CTVHS
VIP
8 tháng 4 2020
Giả sử ta có tam giác thứ nhất có các cạnh là a; b; c đồng dạng với tam giác có các cạnh tương ứng là m; n; p
Gọi chu vi tg thứ nhất là C1; chu vi tam giác thứ 2 là C2
=> a/m=b/n=c/p (tỷ số đồng dạng) theo t/c dãy tỷ số bằng nhau
=> a/m=b/n=c/p=(a+b+c)/(m+n+p)=C1/C2
BM
1
14 tháng 2 2022
Gọi chu vi của tam giác ABC là C1, chu vi của tam giác DEF là C2
và ΔABC∼ΔDEF
=>AB/DE=BC/EF=AC/DF
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AB}{DE}=\dfrac{BC}{EF}=\dfrac{AC}{DF}=\dfrac{AB+BC+AC}{DE+EF+DF}=\dfrac{C_1}{C_2}\)
Do đó: Tỉ số chu vi bằng tỉ số đồng dạng
CM
28 tháng 1 2017
Vì △ A'B'C' đồng dạng △ ABC theo tỉ số k nên ta có:
Theo tính chất dãy tỉ số bằng nhau, ta có:
Suy ra:
Vậy
Cho\(\Delta ABC~\Delta DEF\) với tỉ số đồng dạng:\(\frac{3}{2}\)
Vì\(\Delta ABC~DEF\) theo tỉ số\(\frac{3}{2}\) nên ta có:
\(\frac{AB}{DE}=\frac{AC}{DF}=\frac{BC}{EF}=\frac{3}{2}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{AB}{DE}=\frac{AC}{DF}=\frac{BC}{EF}=\frac{AB+AC+BC}{DE+DF+EF}=\frac{3}{2}\)
Suy ra:\(\frac{AB+AC+BC}{DE+DF+EF}=\frac{3}{2}\)
Vậy \(\frac{P_{ABC}}{P_{DEF}}=\frac{3}{2}\)
Hay tỉ số chu vi của 2 tam giác đồng dạng bằng nhau
P:chu vi
#hoktot<3#