Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho\(\Delta ABC~\Delta DEF\) với tỉ số đồng dạng:\(\frac{3}{2}\)
Vì\(\Delta ABC~DEF\) theo tỉ số\(\frac{3}{2}\) nên ta có:
\(\frac{AB}{DE}=\frac{AC}{DF}=\frac{BC}{EF}=\frac{3}{2}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{AB}{DE}=\frac{AC}{DF}=\frac{BC}{EF}=\frac{AB+AC+BC}{DE+DF+EF}=\frac{3}{2}\)
Suy ra:\(\frac{AB+AC+BC}{DE+DF+EF}=\frac{3}{2}\)
Vậy \(\frac{P_{ABC}}{P_{DEF}}=\frac{3}{2}\)
Hay tỉ số chu vi của 2 tam giác đồng dạng bằng nhau
P:chu vi
#hoktot<3#
Vì △ A'B'C' đồng dạng △ ABC theo tỉ số k nên ta có:
Theo tính chất dãy tỉ số bằng nhau, ta có:
Suy ra:
Vậy
Gọi chu vi của tam giác ABC là C1, chu vi của tam giác DEF là C2
và ΔABC∼ΔDEF
=>AB/DE=BC/EF=AC/DF
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AB}{DE}=\dfrac{BC}{EF}=\dfrac{AC}{DF}=\dfrac{AB+BC+AC}{DE+EF+DF}=\dfrac{C_1}{C_2}\)
Do đó: Tỉ số chu vi bằng tỉ số đồng dạng
1/
Ta có: \(\frac{12}{16}=\frac{9}{12}=\frac{15}{20}=\frac{3}{4}\Leftrightarrow\frac{AB}{DE}=\frac{BC}{EF}=\frac{CA}{FD}\)
suy ra Tam giác ABC đồng dạng với tam giác DEF
Nên \(\left\{{}\begin{matrix}\widehat{ABC}=\widehat{DEF}\\\widehat{ACB}=\widehat{DFE}\\\widehat{BAC}=\widehat{EDF}\end{matrix}\right.\) (2 góc tương ứng)
AB/sinC=2R
A'B'/sinC'=2R'
mà AB/A'B'=k
và goc C=góc C'
nên 2R/2R'=AB/A'B'=k
=>R/R'=k(Đpcm)
Giả sử ta có tam giác thứ nhất có các cạnh là a; b; c đồng dạng với tam giác có các cạnh tương ứng là m; n; p
Gọi chu vi tg thứ nhất là C1; chu vi tam giác thứ 2 là C2
=> a/m=b/n=c/p (tỷ số đồng dạng) theo t/c dãy tỷ số bằng nhau
=> a/m=b/n=c/p=(a+b+c)/(m+n+p)=C1/C2