Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A =19^1981+11^1980
19^1981 = ( 2.10 -1)^1981 đồng dư -1 (mod 10)
11^1980 = ( 10 +1)^1980 đồng dư 1 (mod 10)
=> A chia hết cho 10.
b- ta chứng minh B =10^n - 10 luôn chia hết cho 45.
B = 10^n - 10 = 10(10^n -1)=10.9.(10^n + 10^(n-1) +...+1)
=> B chia hết cho 5 và 9
mà 5 và 9 nguyên tố cùng nhau vậy B chia hết cho 5.9=45
a ) 121980 = (122)990 = .....4990 = .......6
21000 = ( 22 )500 = 4500 = ......6
=> 121980 - 21000 = ......6 - ......6 = .......0 chia hết cho 10
=> 121980 - 21000 chia hết cho 10 (đpcm)
b ) 191980 = .....1
111980 = ......1
=> 191980 - 111980 = .....1 - .....1 = ......0 chia hết cho 10
=> 191980 - 111980 chia hết cho 10(đpcm)
a)
109 + 2
=100...0 + 2 (9 chữ số 0)
=100...02 (8 chữ số 0)
Có tổng các chữ số là:
1+0+0+...+0+2=3 nên chia hết cho 3
=>109 + 2 chia hết cho 3
b)
1010 -1
= 100...0 - 1 (10 chữ số 0)
=99...9 (10 chữ số 9)
Có tổng chữ số là:
9+9+9...+9=90 chia hết cho 9
=>1010 -1 chia hết cho 9
a, ĐPCM = 10^9+2 chia hết cho 3
b, ĐPCM = 10^10-1 chia hết cho 9