K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2023

\(S=5+5^2+5^3+5^4+...+5^{2022}\\ =\left(5+5^2\right)+5^2.\left(5+5^2\right)+...+5^{2020}.\left(5+5^2\right)\\ =30+30.5^2+...+30.5^{2020}\\ =30.\left(1+5^2+...+5^{2020}\right)⋮30\)

4 tháng 8 2023

\(S=5+5^2+5^3+...+5^{2022}\)

\(\Rightarrow S=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{2000}\left(5+5^2\right)\)

\(\Rightarrow S=20+5^2.20+...+5^{2000}.20\)

\(\Rightarrow S=20\left(1+5^2+...+5^{2000}\right)⋮20\)

\(\Rightarrow dpcm\)

73=343 đồng dư với 1(mod 9)

=>(73)6=718 đồng dư với 1(mod 9)

=>718=9k+1

=>B=9k+1+18.3-1=9k+18.3=9(k+2.3) chia hết cho 9

=>đpcm

11 tháng 7 2016

mình cũng nghĩ giống bạn 

4 tháng 1 2017

cau viet so mu kieu gi vay

20 tháng 9 2018

s= 1 -3 +3- 3-...+32014-32015

 =(1-3+32)-(33-34+35)-...-(32013-32014+32015)

 =(1-3+32)-33(1-3+32)-...-32013(1-3+32)

=7-33 *7-...-32013*7

=7*(1-33-...-32013)

có 7 chia hết cho 7,(1-33-...-32013)  là số nguyên

=> s chia hết cho 7 (đpcm)

11 tháng 8 2023

a) \(A=3+3^2+..+3^{60}\)

\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)

\(A=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+...+3^{59}\cdot\left(1+3\right)\)

\(A=4\cdot\left(3+3^3+...+3^{59}\right)\)

Vậy A chia hết cho 4

b) \(A=3+3^2+3^3+...+3^{60}\)

\(A=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)

\(A=3\cdot\left(1+3+3^2\right)+...+3^{58}\cdot\left(1+3+3^2\right)\)

\(A=13\cdot\left(3+..+3^{58}\right)\)

Vậy A chia hết cho 13