Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S1=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)
\(=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{99}.\left(1+5\right)\)
\(=5.6+5^3.6+...+5^{99}.6\)
\(=6.\left(5+5^3+...+5^{99}\right)⋮6\)
câu b tương tự
\(S3=16^5+21^5\)
vì 16+21=33 chia hết cho 33
=>165+215 chia hết cho 33
P/S: theo công thức:(n+m chia hết cho a=> nb+mb chia hết cho a)
S1 = 5+52+53+...+599+5100
=5. (1+5)+53 . (1+5) + ... + 599.(1+5)
= 5.6 +53.6+..+ 599.6
=6.(5+53 + ... +599):6
vậy x = ...
b)2+22+23+...+299+2100
=2.(1+2)+23.(1+2) + ... + 299.(1+2)
=2.3+23+..+299):3
= ....
c)165+215
vì 16+21 chia hế 33 nên
theo công thức(n+m chia hết cho a=(nb+mb)
a) Đặt A= \(1+2+2^2+...+2^7=\left(1+2\right)\left(2^2+2^3\right)+...+\left(2^6+2^7\right)\)
\(=3+2^2\left(1+2\right)+...+2^6\left(1+2\right)\)
\(=3\left(1+2^2+...+2^6\right)\)
Vậy A chia hết ho 3
Câu b,c tương tư
\(a)\) Đặt \(A=5+5^2+5^3+5^4+...+5^{99}+5^{100}\)ta có :
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)
\(A=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)
\(A=5.6+5^3.6+...+5^{99}.6\)
\(A=6.\left(5+5^3+...+5^{99}\right)\) \(⋮\) \(6\)
Vậy \(A⋮6\)
\(b)\) Đặt \(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}\) ta có :
\(B=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(B=2\left(1+2+4+8+16\right)+...+2^{96}\left(1+2+4+8+16\right)\)
\(B=2.31+...+2^{96}.31\)
\(B=31.\left(2+2^6+...+2^{96}\right)\) \(⋮\) \(31\)
Vậy \(B⋮31\)
Năm mới zui zẻ ^^
nhận xét: 22+23 + 24 +25 = 60, 60 chia hết cho 5
Khi đó, A= (22+23 + 24 +25) + (26 + 27 + 28 + 29) +.....+ (297 +298 +299+2100)
= (22+23 + 24 +25) + 24 (22+23 + 24 +25)+.......+ 296 (22+23 + 24 +25)
= 1+24 + ....+296. (22+23 + 24 +25) chia hết cho 60 ; 60 chia hết cho 5
=> A chia hết cho 5
Vậy A chia hết cho 5
Vì n là số tự nhiên nên n có dạng:
n=2k hoặc n= 2k+1 ( k ∈N∈N)
Với n=2k thì: (n+3)(n+12) = (2k+3)(2k+12)
= 2(2k+3)(k+6)⋮⋮2
⇒⇒(n+3)(n+12) ⋮2⋮2
Với n = 2k+1 thì: (n+3)(n+12)= (2k+1+3)(2k+1+12)
= (2k+4)(2k+13)
= 2(k+2)(2k+13)⋮2⋮2
⇒⇒ (n+3)(n+12)⋮2⋮2
Vậy (n+3)(n+12) là số chia hết cho 2 với mọi số tự nhiên n
Câu a mk ko hiểu gì nha xl bn nhìu
b)1-2+3-4+...+99-100
=(1-2)+(3-4)+...+(99-100)
=(-1)+(-1)+...+(-1)
=(-1) . 50
=(-50)
c) 5 + 52 + 53 + ...+ 599 + 5100
=(5+52)+(53+54)+....+(599+5100)
=30+52(5+52)+...+598(5+52)
=30.1+52.30+.....+598.30
=30(1+52+...+598) chia hết cho 6
Số số hạng của dãy số M chính là số số hạng của dãy số cách đều từ 1 ---> 100 , mỗi số cách nhau 1 đơn vị
=> Số số hạng của M là : \(\frac{100-1}{1}+1=100\) ( số hạng )
Vậy ta có số nhóm là :
100 : 2 = 50 ( nhóm )
M = ( 5 + 52 ) + ( 53 + 54 ) + ... + ( 599 + 5100 )
M = ( 5 + 52 ) + 52 ( 5 + 52 ) + ... + 598 ( 5 + 52 )
M = 1 . 30 + 52 . 30 + ... + 598 . 30
M = ( 1 + 52 + ... + 598 ) . 30
Vì : 30 = 6 .5
=> M chia hết cho 6
Vậy M chia hết cho 6