K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2018

\(S1=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)

\(=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{99}.\left(1+5\right)\)

\(=5.6+5^3.6+...+5^{99}.6\)

\(=6.\left(5+5^3+...+5^{99}\right)⋮6\)

câu b tương tự

\(S3=16^5+21^5\)

vì 16+21=33 chia hết cho 33

=>165+215 chia hết cho 33

P/S: theo công thức:(n+m chia hết cho a=> nb+mchia hết cho a)

S1 = 5+52+53+...+599+5100

=5. (1+5)+53 . (1+5) + ... + 599.(1+5)

= 5.6 +53.6+..+ 599.6

=6.(5+53 + ... +599):6

vậy x = ...

b)2+22+23+...+299+2100

=2.(1+2)+23.(1+2) + ... + 299.(1+2)

=2.3+23+..+299):3

= ....

c)165+215

vì 16+21 chia hế 33 nên

theo công thức(n+m chia hết cho a=(nb+mb)

16 tháng 12 2016

nhận xét: 22+23 + 24 +25 = 60, 60 chia hết cho 5

Khi đó, A= (22+23 + 24 +25) + (26 + 27 + 28 + 29) +.....+ (297 +298 +299+2100)

= (22+23 + 24 +25) + 24 (22+23 + 24 +25)+.......+ 296 (22+23 + 24 +25)

= 1+24 + ....+296. (22+23 + 24 +25) chia hết cho 60 ; 60 chia hết cho 5

=> A chia hết cho 5

Vậy A chia hết cho 5

 

18 tháng 12 2016

thank you

 

18 tháng 10 2015

a) Đặt A= \(1+2+2^2+...+2^7=\left(1+2\right)\left(2^2+2^3\right)+...+\left(2^6+2^7\right)\)

                                               \(=3+2^2\left(1+2\right)+...+2^6\left(1+2\right)\)

                                                \(=3\left(1+2^2+...+2^6\right)\)

                    Vậy A chia hết ho 3

Câu b,c tương tư

14 tháng 2 2018

\(a)\) Đặt \(A=5+5^2+5^3+5^4+...+5^{99}+5^{100}\)ta có : 

\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)

\(A=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)

\(A=5.6+5^3.6+...+5^{99}.6\)

\(A=6.\left(5+5^3+...+5^{99}\right)\) \(⋮\) \(6\)

Vậy \(A⋮6\)

14 tháng 2 2018

\(b)\) Đặt \(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}\) ta có : 

\(B=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(B=2\left(1+2+4+8+16\right)+...+2^{96}\left(1+2+4+8+16\right)\)

\(B=2.31+...+2^{96}.31\)

\(B=31.\left(2+2^6+...+2^{96}\right)\) \(⋮\) \(31\)

Vậy \(B⋮31\)

Năm mới zui zẻ ^^

26 tháng 10 2016

Số số hạng của dãy số M chính là số số hạng của dãy số cách đều từ 1 ---> 100 , mỗi số cách nhau 1 đơn vị 

=> Số số hạng của M là : \(\frac{100-1}{1}+1=100\) ( số hạng )

Vậy ta có số nhóm là :

    100 : 2 = 50 (  nhóm )

M = ( 5 + 52 ) + ( 53 + 54 ) + ... + ( 599 + 5100 )

M = ( 5 + 52 ) + 52 ( 5 + 52 ) + ... + 598 ( 5 + 52 )

M = 1 . 30 + 52 . 30 + ... + 598 . 30

M = ( 1 + 52 + ... + 598 ) . 30

Vì : 30 = 6 .5 

=> M chia hết cho 6

Vậy M chia hết cho 6

Câu a mk ko hiểu gì nha xl bn nhìu

b)1-2+3-4+...+99-100

=(1-2)+(3-4)+...+(99-100)

=(-1)+(-1)+...+(-1)

=(-1) . 50

=(-50)

c) 5 + 52 + 53 + ...+ 599 + 5100 

=(5+52)+(53+54)+....+(599+5100)

=30+52(5+52)+...+598(5+52)

=30.1+52.30+.....+598.30

=30(1+52+...+598) chia hết cho 6

30 tháng 10 2015

a) A=5(1+5)+53(1+5)+...+5199(1+5)

  =(1+5)(5+53+....+5199) chia hết cho 6

b) A:31 dư 30 hay A-30 chia hết cho 31

Ta có A=5(1+5+52)+54(1+5+52)+57(1+5+52)+.....+598(1+5+52)

           31(5+54+57+...+599) chia hết cho 31. Nên A chia cho 31 không dư