\(\dfrac{n+2}{2n+3}\),(n\(\in\)N) là phân số tố...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2017

gọi d là ước chung lớn nhất của n+2 và 2n+3

suy ra n+2 chia hết cho d suy ra 2n+4 chia hết cho d

ta cũng có 2n+3 chia hết cho d

=> (2n+4)-(2n+3) chia hết cho d

=> 1 chia hết cho d

=> d=1 => đpcm

25 tháng 5 2017

Gọi \(d=ƯCLN\left(n+2;2n+3\right)\)

\(\Rightarrow n+2⋮d;2n+3⋮d\)

\(\Rightarrow2n+4⋮d;2n+3⋮d\)

\(\Rightarrow\left(2n+4\right)-\left(2n+3\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow\) n+2 và 2n+3 là hai số nguyên tố cùng nhau.

\(\Rightarrow\) Phân số \(\dfrac{n+2}{2n+3}\) tối giản.

Vậy phân số \(\dfrac{n+2}{2n+3}\) tối giản với \(\forall n\in N\).

Vậy

26 tháng 3 2020

Gọi ƯCLN của n+2 và 2n+3 là d

Ta có:

\(n+2⋮d;2n+3⋮d\)

\(\Rightarrow2n+4⋮d;2n+3⋮d\)

\(\Rightarrow2n+4-2n-3⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Suy ra \(\left(n+2;2n+3\right)=1\Rightarrow\frac{n+2}{2n+3}\) là phân số tối giản

28 tháng 3 2019

Gọi UCLN (4n+7; 2n+3) là d

ta có: 4n + 7 chia hết cho d

2n + 3 chia hết cho d => 4n + 6 chia hết cho d

=> 4n + 7 - 4n - 6 chia hết cho d

=> 1 chia hết cho d

=> (4n+7)/(2n+3) là p/s tối giản

28 tháng 3 2019

Muốn chứng tỏ phân số \(\frac{4n+7}{2n+3}\)là phân số tối giản thì ta phải chứng minh được ( 4n+7; 2n + 3 ) = 1

Gọi d là ƯCLN( 4n + 7; 2n + 3 ). Ta có:

\(\hept{\begin{cases}4n+7⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}4n+7⋮d\\2\left(2n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+7⋮d\\4n+6⋮d\end{cases}}}\)

\(\Rightarrow\left(4n+7\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

=> Phân số \(\frac{4n+7}{2n+3}\)tối giản. ( ĐPCM )

23 tháng 1 2018

Đặt \(ƯCLN\left(n+1;2n+3\right)=d\)

\(\Rightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left(2n+3\right)-\left(2n+2\right)=1⋮d\)

=> d = 1

Vậy ps trên tối giản

23 tháng 1 2018

Đặt \(ƯCLN\left(n+1;2n+3\right)=d\)

\(\Leftrightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Leftrightarrow2n+3-2n-2⋮d\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d=1\)

Vậy mọi phân số có dạng \(\dfrac{n+1}{2n+3}\) đều là phân số tối giản.

4 tháng 3 2019

ta có:

Gọi d là ước chung của 2x+5 và 2x+3

ta có: 2x+5-(2x+3) chia hết cho d

hay 2 chia hết cho d

=> d thuộc ước của 2

mà 2x+3 và 2x+5 là số lẻ

suy ra d là số lẻ

vậy d=1

hay 2x+5/2x+3 là p/s tối giản

hok tốt

k chị nha

23 tháng 5 2017

Gọi ƯCLN (12n+1,30n+2) là d

\(\Rightarrow\left(12n+1\right)⋮d\)

\(\left(30n+2\right)⋮d\)

\(\Rightarrow5\left(12n+1\right)-2\left(30n+2\right)⋮d\)

\(\Rightarrow60n+5-60n-4⋮d\)

\(\Rightarrow1⋮d\Leftrightarrow d=1\)

Vậy ƯCLN \(\left(12n+1,30n+2\right)=1\Leftrightarrow\dfrac{12n+1}{30n+2}\) là p/s tối giản \(\left(dpcm\right)\)

23 tháng 5 2017

Gọi ước chung lớn nhất của 12n+1 và 30n+ 2 là d

\(\Rightarrow\) ( 12n+1) \(⋮\) d và ( 30n+2 ) \(⋮\) d

\(\Rightarrow\) \(\left[5\left(12n+1\right)-2\left(30n+2\right)\right]⋮d\)

\(\Leftrightarrow\) ( 60n + 5 - 60n - 4 ) \(⋮d\)

\(\Leftrightarrow\) 1 \(⋮\) d hay d= 1

Vậy ước chung lớn nhất của 12n+ 1 và 30n+2 là 1 hay \(\dfrac{12n+1}{30n+2}\) là phân số tối giản .

6 tháng 7 2021

Gọi d là (2n+5;3n+7)

\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)

=> [6n+15 - ( 6n+14 )] \(⋮\) d 

=> 1 \(⋮\)d

=> phân số trên tối giản 

19 tháng 5 2019

Gọi \(ƯCLN\)\((2n+1,6n+7)=d\)

Ta có : \(\hept{\begin{cases}2n+1⋮d\\6n+7⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}6(2n+1)⋮d\\2(6n+7)⋮d\end{cases}}\)

Làm nốt nhé :v

19 tháng 5 2019

Gọi ( 2n+1 , 6n+7 )=d

=>\(\hept{\begin{cases}2n+1⋮d\\6n+7⋮d\end{cases}}\)

===>\(\hept{\begin{cases}6\cdot\left(2n+1\right)⋮d\\2\cdot\left(6n+7\right)⋮d\end{cases}}\)

=>\(\hept{\begin{cases}12n+6⋮d\\12n+14⋮d\end{cases}}\)

<=>(12n+14 - 12n+6) \(⋮\)d

<=>8 \(⋮\)d

=> d  thuộc ước của 8.

Bạn tự cm d=1 nhé!

~ Chúc bạn hok tốt ~

30 tháng 3 2017

Đặt ƯCLN(n + 1; 2n + 3) là d.

Ta có: n + 1 \(⋮\) d và 2n + 3 \(⋮\) d.

=> 2(n + 1) \(⋮\) d và 2n + 3 \(⋮\) d.

=> 2n + 2 \(⋮\) d và 2n + 3 \(⋮\) d.

=> (2n + 3) - (2n + 2) \(⋮\) d.

=> 2n + 3 - 2n - 2 \(⋮\) d.

=>3 - 2 \(⋮\) d => 1 \(⋮\) d => d = 1.

Vậy \(\dfrac{n+1}{2n+3}\) là phân số tối giản.