K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
14 tháng 6 2021

\(P\left(x\right)=5x^3+2x^4-x^2+3x^2-x^3-2x^4+1-4x^3\)

\(P\left(x\right)=\left(2x^4-2x^4\right)+\left(5x^3-x^3-4x^3\right)+\left(3x^2-x^2\right)+1\)

\(P\left(x\right)=2x^2+1\)

Có \(2x^2\ge0\Rightarrow2x^2+1>0,\forall x\inℝ\).

Do đó đa thức trên không có nghiệm.

21 tháng 4 2022

\(x^2-6x+12\)

\(=x^2-3x-3x+9+3\)

\(=\left(x^2-3x\right)+\left(-3x+9\right)+3\)

\(=x\left(x-3\right)-3\left(x-3\right)+3\)

\(=\left(x-3\right)\left(x-3\right)+3\)

\(=\left(x-3\right)^2+3\)

Ta có: \(\left(x-3\right)^2\ge0\)

\(\Rightarrow\left(x-3\right)^2+3>0\)

Vậy \(P\left(x\right)=x^2-6x+12\) không có nghiệm

27 tháng 3 2019

Ta có \(x^4+2x^2+1=\left(x^2+1\right)^2\)

          Ta thấy \(\left(x^2+1\right)^2>0\forall x\)

\(\Rightarrow\)đa thức trên không có nghiệm

Vậy ...

TA CÓ

\(p\left(\frac{1}{2}\right)=4\cdot\left(\frac{1}{2}\right)^2-4\cdot\frac{1}{2}+1=4\cdot\frac{1}{4}-2+1\)

\(=1-2+1=0\)

vậy ......

TA CÓ

\(x^2\ge0\Rightarrow4x^2\ge0\Rightarrow4x^2+1\ge1\)hay\(4x^2+1>0\)

vậy..............

4 tháng 4 2019

Thay \(x=\frac{1}{2}\)vào P (x) ta có:

\(P\left(\frac{1}{2}\right)=4.\left(\frac{1}{2}\right)^2-4.\frac{1}{2}+1\)

\(P\left(\frac{1}{2}\right)=4.\frac{1}{4}-2+1\)

\(P\left(\frac{1}{2}\right)=1-2+1\)

\(P\left(\frac{1}{2}\right)=0\)

Vậy \(x=\frac{1}{2}\) là nghiệm của P(x)

25 tháng 4 2016

\(f\left(x\right)=x^2-x+1=x^2-\frac{1}{2}x-\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=x\left(x-\frac{1}{2}\right)-\frac{1}{2}\left(x-\frac{1}{2}\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì  \(\left(x-\frac{1}{2}\right)^2\ge0\) với mọi x \(\in\) R

 \(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge0+\frac{3}{4}=\frac{3}{4}>0\) với mọi x \(\in\) R

Vậy \(f\left(x\right)=x^2-x+1\) vô nghiệm trên tập hợp số thực R

18 tháng 4 2019

P(x)=3x^4+2x^2+2

Ta có 3x^4 >=0 , 2x^2 >=0 =. P(x)>0 

Vậy P(x) vô nghiêm

Học tốt

18 tháng 4 2019

Ta có: P(x) = 4x3 + 3x4 - 2x2 - x3 + 4x2 - 3x3 + 2

P(x) = (4x3 - x3 - 3x3) + 3x4 - (2x2 - 4x2) + 2

P(x) = 3x4 + 2x2 + 2 \(\ge\)2 > 0

(vì 3x4 \(\ge\)0; 2x2 \(\ge\)0; 2 > 0)

=> Đa thức P(x) ko có nghiệm

19 tháng 5 2017

Ta có: x2 + 2x + 2 = x2 + x + x + 1 + 1

= x(x + 1) + (x + 1) + 1

= (x + 1)(x + 1) + 1 = (x + 1)2 + 1

Vì (x + 1)2 ≥ 0 với mọi x ∈ R, nên (x + 1)2 + 1 > 0 với mọi x ∈ R

Vậy đa thức x2 + 2x + 2 không có nghiệm.

`M = 2x^2+1`

Ta có: \(x^2\ge0\)

`->` \(2x^2\ge0\)

`->`\(2x^2+1\ge1>0\)

`->` Đa thức `M \ne 0` \(\forall\) \(x\) 

`->` Đa thức M không có nghiệm (vô nghiệm).

 

18 tháng 4 2021

a)

Ta có : P(y)=0

<=> 3y-6=0

<=> 3y=6

<=> y=2

b>

Ta có:
Nhận xét : Với mọi số thực y ta có : y4= (y2)2;≥ 0 ⇒ y4+ 2 ≥ 2 &gt; 0.
Vậy với mọi số thực y thì Q(y) &gt; 0 nên không có giá trị nào của y để Q(y) = 0 hay đa thức vô nghiệm.

18 tháng 4 2021

a, Để đa thức P(y) co nghiệm => P(y) = 0

=> 3y+6=0  

=> 3y=-6 

=>y= -2

Vậy đa thức P(y) co nghiệm bằng - 2

b, Vì y^4 luôn lớn hơn hoặc bằng 0 

=> y^4 + 2 luôn lớn hơn hoặc bằng 0

=> y^4 luôn lớn hơn 2

=> Đa thức Q(x) không có nghiệm