Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-3x^4<=0 với mọi x
=>-3x^4-10<=-10<0 với mọi x
=>Đa thức vô nghiệm
\(x^2+3x+5=0\)
\(\Rightarrow x^2+2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\frac{9}{4}+5=0\)
\(\Rightarrow\left(x^2+2.x.\frac{3}{2}+\frac{9}{4}\right)+\frac{11}{4}=0\)
\(\Rightarrow\left(x+\frac{3}{2}\right)^2=-\frac{11}{4}\)(vô lý)(vì số bình phương luôn lớn hơn 0)
VẬY ĐA THỨC TRÊN VÔ NGHIỆM
Vậy là xong rùi, nhớ
\(C\left(x\right)=\frac{4x-3}{6}-\frac{5-3x}{3}+\frac{1}{3}\)
\(\frac{4x-3}{6}-\frac{5-3x}{3}+\frac{1}{3}=0\)
\(4x-3-2\left(5-3x\right)+2=0\)
\(4x-1-2\left(5-3x\right)=0\)
\(4x-1-10+6x=0\)
\(10x-11=0\)
\(10x=0+11\)
\(10x=11\)
\(x=\frac{11}{10}\)
\(a)\)\(Cho\)\(x^2+3=0\)
\(x^2\) \(=0-3\)
\(x^2\) \(=-3\)( vô lý )
Vì: Mũ chẵn chuyển thành số âm
=> Đa thức vô nghiệm
\(b)\)\(Cho\)\(-3x^4-5=0\)
\(-3x^4\) \(=0+5\)
\(-3x^4\) \(=5\)
\(x^4\) \(=5:\left(-3\right)\)
\(x^4\) \(=\frac{-5}{3}\)( Vô lý )
Vì: Mũ chẵn chuyển thành số không âm
=> Đa thức vô nghiệm
x^4-2x^2+6
=x^4 - x^2 - x^2 +1 +5
=x^2(x^2-1)-(x^2-1) +5
=(x^2-1)(x^2-1) +5
=(x^2-1)^2 + 5\(\ge\)5 hay \(\ne\)0
Vậy x^4- 2x^2 +6 vô nghiệm
a)
Ta có : P(y)=0
<=> 3y-6=0
<=> 3y=6
<=> y=2
b>
Ta có:
Nhận xét : Với mọi số thực y ta có : y4= (y2)2;≥ 0 ⇒ y4+ 2 ≥ 2 > 0.
Vậy với mọi số thực y thì Q(y) > 0 nên không có giá trị nào của y để Q(y) = 0 hay đa thức vô nghiệm.
a, Để đa thức P(y) co nghiệm => P(y) = 0
=> 3y+6=0
=> 3y=-6
=>y= -2
Vậy đa thức P(y) co nghiệm bằng - 2
b, Vì y^4 luôn lớn hơn hoặc bằng 0
=> y^4 + 2 luôn lớn hơn hoặc bằng 0
=> y^4 luôn lớn hơn 2
=> Đa thức Q(x) không có nghiệm
Vì \(\left(x-5\right)^2\) \(\ge0\) nên \(\left(x-5\right)^2+1\ge1\)
Vậy đa thức trên vô nghiệm.
Mình chỉ trả lời: vì tại x=a bất kì đều có giá trị khác 0 nên (x-5)^2+1 vô nghiệm
Ta có x\(^6\)\(\ge\)0 với mọi x
-3x\(^6\)\(\le\)0 với mọi x
nên -3x\(^6\)-2022 \(\le\)0 với mọi x
Vậy đa thức -3x\(^6\)-2022 vô nghiệm