Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A+B=a+b-5+(-b-c+1)=a+b-5-b-c+1=a-c-4 (1)
C-D=b-c-4-(b-a)=b-c-4-b+a=a-c-4 (2)
từ (1) và (2) suy ra A+B=C-D
a.(b - c) + c.(a - b) = b - (a - c)
a.(b - c) + c.(a - b)
= ab - ac + ac - cb
= (ab - bc) + (ac - ac)
= b.(a - c)
em xem lại đề bài nhé
Ta có:
\(a.\left(b+c\right)-a.\left(b+d\right)\)
\(=ab+ac-ab-ad\)
\(=ac-ad\)
\(=a.\left(c-d\right)\) (đpcm)
A + B = (a + b - 5) + (-b - c + 1) = a + b - 5 - b - c + 1 = a + (b - b) - c + (-5 + 1)
= a - c - 4.
C - D = (b - c - 4) - (b - a) = b - c - 4 - b + a = (b - b) - c + a - 4
= a - c - 4.
Vậy A + B = C - D.
Lời giải:
Đặt $\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk$.
Khi đó:
$\frac{a}{c}=\frac{bk}{dk}=\frac{b}{d}(1)$
$\frac{a+b}{c+d}=\frac{bk+b}{dk+d}=\frac{b(k+1)}{d(k+1)}=\frac{b}{d}(2)$
Từ $(1); (2)\Rightarrow \frac{a}{c}=\frac{a+b}{c+d}$
ac + bc - bc - ab = ac - ab
= a (c - b) = - a (b - c)