K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2018

a/ Ta có: abcabc=abc.1001=abc.7.11.13 luôn chia hết cho 7;11;13

b/ Mình chưa bt làm 

Chúc bạn học tốt!

26 tháng 6 2015

a.Dấu hiệu chia hết cho 11: từ trái sang phải tổng của các chữ số có vị trí lẻ trừ tngr của cá chữ số có vị trí lẻ chia hết cho 11 thì số đó chia hết cho 11.

The đề bài ab+cd+eg chia hết cho 11 

nên  10a+10c+10e+b+d+g chia hết cho 11

hay 11(a+c+e)-a-c-e+b+d+g chia hết cho 11

suy ra 11(a+c+e) - (a+c+e-b-d-g) chia hết cho 11

mà 11(a+c+e) chia hết cho 11 suy ra (a+c+e-b-d-g) chia hết cho 11

Vì vậy abcdeg chia hết cho 11

a.Dấu hiệu chia hết cho 11: từ trái sang phải tổng của các chữ số có vị trí lẻ trừ tngr của cá chữ số có vị trí lẻ chia hết
cho 11 thì số đó chia hết cho 11.
The đề bài ab+cd+eg chia hết cho 11 
nên  10a+10c+10e+b+d+g chia hết cho 11
hay 11(a+c+e)-a-c-e+b+d+g chia hết cho 11
suy ra 11(a+c+e) - (a+c+e-b-d-g) chia hết cho 11
mà 11(a+c+e) chia hết cho 11 suy ra (a+c+e-b-d-g) chia hết cho 11
Vì vậy abcdeg chia hết cho 11

1 tháng 11 2015

b)ta có:

abcdeg=abx10000+bcx100+eg

           =abx9999+bcx99+ab+bc+eg

vì abx9999 chia hết cho 11 và bcx99 chia hết cho 11 và ab+bc+eg chia hết cho 11(đầu bài đã cho)

=> abcdeg chia hết cho 11(điều phải chứng minh)

24 tháng 9 2015

Ta có: abcdeg=100000a+10000b+1000c+100d+10e+g

                     =10000ab+100cd+eg

Vì ab:11=> 10000ab: 11

Tương tự 1000cd và eg :11

Vậy abcdeg :11

7 tháng 6 2016

a,abcdeg = ab.10000+ cd. 100 + eg

= 9999.ab + 99.cd + ab + cd+ eg

=[9999ab +99cd + [ ab + cd + eg]

vi 9999ab +99cd chia het cho 11  va ab + cd + eg chia het cho 11[ theo de bai]

=>dpcm

b] tu bn lam

12 tháng 2 2016

abcdeg=ab.10000+cd.100+eg

=9999.ab+99.cd+ab+cd+eg

=(9999ab+99cd)+(ab+cd+eg)

vì 9999.ab+99.cd=11.909.ab+11.9.cd=11.(909ab+9cd) chia hết cho 11

ab+cd+eg chia hết cho 11(theo đề)

=>abcdeg chia hết cho 99

10 tháng 11 2017

a) Ta có: ab - ba = 10a +b - 10b - a = (10a - a) - (10b - b)

                        = a(10 - 1) - b(10 - 1) = 9a - 9b = 9(a - b)

\(\Rightarrow\)(ab - ba ) \(⋮\)9 (vì có chứa thừa số 9)

b) Ta có: abcd = 100ab + cd = 99ab + ab + cd

Vì 99ab \(⋮\)11; (ab + cd) \(⋮\)11

\(\Rightarrow\)(99ab + ab + cd) chia hết cho 11

\(\Rightarrow\)(ab + cd) chia hết cho 11 thì abcd chia hết cho 11

c) Ta có: abcdeg = 1000abc + deg = 1001abc + (abc - deg)

Vì 1001abc chia hết cho 13

(abc - deg) chia hết cho 13

\(\Rightarrow\)abcdeg chia hết cho 13

\(\Rightarrow\)(abc - deg) chia hết cho 13 thì abcdeg chia hết cho 13.

30 tháng 1 2021

Ta có : \(abcdeg=ab10000+cd100+eg\)

\(=\left(ab+cd+eg\right)+\left(ab9999+cd99+eg\right)\)

\(=\left(ab+cd+eg\right)+11.\left(ab909+cd9+eg\right)⋮11\)

\(\Rightarrow abcdeg⋮11\)