Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Giả sử có hữu hạn số nguyên tố là a1,a2,a3,...,an trong đó an là số nguyên tố lớn nhất trong tất cả các số nguyên tố.
Xét số A= a1.a2.a3....an chia hết cho mỗi số nguyên tố ap (với 1<=p<=n)
=> số A+1 chia cho mỗi số ap đều dư 1.(1)
Lại có A+1 > an => A+1 là hợp số =>A+1 chia hết cho 1 trong các số nguyên tố ap,mâu thuẫn với (1).
=> điều giả sử là sai=> có vô số số nguyên tố
2/ ko biết vì học lớp 6
3/
Trong toán học, số vô tỉ là số thực không phải là số hữu tỷ, nghĩa là không thể biểu diễn được dưới dạng tỉ số a/b (a và b là các số nguyên).Tập hợp số vô tỉ kí hiệu là \(\mathbb I\)
Ví dụ:
- Số thập phân vô hạn có chu kỳ thay đổi: 0,1010010001000010000010000001...
- Số = 1,41421 35623 73095 04880 16887 24209 7...
- Số pi = 3,14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211 70679...
- Số lôgarít tự nhiên e = 2,71828 18284 59045 23536...
vì không có hữu hạn số tự nhiên nên ko có hữu hạn số nguyên tố
2 ^ 0 = 1
A = 1 + 2 + 2 ^ 2 + ... + 2 ^ 2015
A x 2 = ( 1 + 2 + 2 ^ 2 + .., + 2 ^ 2015 ) x 2
A x 2 = 2 + 2^ 2 + 2 ^ 3 + ... + 2 ^ 2016
A x 2 = ( 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 2015 ) + 2 ^ 2016 - 1
A x 2 = A + 2 ^ 2016 - 1
A = 2 ^ 2016 - 1 ( cung bớt các 2 về đi A )
=> 2 ^ 2016 hơn 2 ^ 2016 - 1 một đơn vị
=> 2 ^ 2016 và 2 ^ 2016 - 1 là 2 số nguyên liên tiếp
Hay A và B là 2 số nguyên liên tiếp
A= 2^0+2^1+2^2+......+2^2015
A=2^2015-1 mà B= 2^2016
A và B là 2 số nguyên liên tiếp
A = 20 + 21 + 22 + ... + 22010 + 22011
2A = 21 + 22 + 23 + ... + 22011 + 22012
2A - A = 22012 - 20
A = 22012 - 1
Chứng tỏ A và B là 2 số tự nhiên liên tiếp
A = 20 + 21 + 22 +....+ 22011
2A = 21 + 22 + 23 +....+ 22012
2A - A = 21 + 22 + 23 +....+ 22012 - (20 + 21 + 22 +....+ 22011)
=> A = 22012 - 1
=> A và B là 2 số tự nhiên liên tiếp (Đpcm)
Gọi UCLN (a2+a+1, a2+a-1)=d
=>\(\hept{\begin{cases}a^2+a+1⋮d\\a^2+a-1⋮d\end{cases}}\)=> a2+a+1-(a2+a-1)\(⋮\)d=>2\(⋮\)d(đến đây mình nghĩ đề sai thì phải)
Gọi d là ước chung của a2 + a + 1 và a2 + a - 1 ( d \(\in\)N)
\(\Rightarrow\hept{\begin{cases}a^2+a+1⋮d\\a^2+a-1⋮d\end{cases}\Rightarrow\left[\left(a^2+a+1\right)-\left(a^2+a-1\right)\right]⋮d}\)
=> ( a2 + a + 1 - a2 - a + 1 ) \(⋮\)d
=> 2 \(⋮\)d => d \(\in\)Ư(2)
Mà a2 + a + 1 = a(a+1) + 1
a và a + 1 là 2 STNLT nên tích a(a+1) là số chẵn => a(a+1) + 1 lẻ => a2 + a + 1 lẻ
Mà d là ước của a2 + a + 1 => d lẻ
Vậy d \(\in\)Ư(2) = { 1 ; 2 } . d là số lẻ => d = 1
=> a2 + a + 1 và a2 + a - 1 nguyên tố cùng nhau.